首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

2.
The base pairing patterns in RNA structures are more versatile and completely different as compared to DNA. We present here results of ab-initio studies of structures and interaction energies of eight selected RNA base pairs reported in literature. Interaction energies, including BSSE correction, of hydrogen added crystal geometries of base pairs have been calculated at the HF/6-31G** level. The structures and interaction energies of the base pairs in the crystal geometry are compared with those obtained after optimization of the base pairs. We find that the base pairs become more planar on full optimization. No change in the hydrogen bonding pattern is seen. It is expected that the inclusion of appropriate considerations of many of these aspects of RNA base pairing would significantly improve the accuracy of RNA secondary structure prediction.  相似文献   

3.
Paranemic crossover (PX) DNA is a four-stranded coaxial DNA complex containing a central dyad axis that relates two flanking parallel double helices. The strands are held together exclusively by Watson-Crick base pairing. The key feature of the structure is that the two adjacent parallel DNA double helices form crossovers at every point possible. Hence, reciprocal crossover points flank the central dyad axis at every major or minor groove separation. This motif has been modeled and characterized in an oligonucleotide system; a minor groove separation of five nucleotide pairs and major groove separations of six, seven, or eight nucleotide pairs produce stable PX DNA molecules; a major groove separation of 9 nucleotide pairs is possible at low concentrations. Every strand undergoes a crossover every helical repeat (11, 12, 13, or 14 nucleotides), but the structural period of each strand corresponds to two helical repeats (22, 24, 26, or 28 nucleotides). Nondenaturing gel electrophoresis shows that the molecules are stable, forming well-behaved complexes. PX DNA can be produced from closed dumbbells, demonstrating that the molecule is paranemic. Ferguson analysis indicates that the molecules are similar in shape to DNA double crossover molecules. Circular dichroism spectra are consistent with B-form DNA. Thermal transition profiles suggest a premelting transition in each of the molecules. Hydroxyl radical autofootprinting analysis confirms that there is a crossover point at each of the positions expected in the secondary structure. These molecules are generalized Holliday junctions.  相似文献   

4.
The very specific binding of the HgII ion unexpectedly and significantly stabilizes naturally occurring thymine-thymine base mispairing in DNA duplexes. Following this finding, we prepared DNA duplexes containing metal-mediated base pairs at the desired sites, as well as novel double helical architectures consisting only of thymine-HgII-thymine pairs.  相似文献   

5.
6.
The total interaction energies of altogether 15 hydrogen-bonded nucleic acid base pairs containing unusual base tautomers were calculated. The geometry properties of all selected adenine-thymine and guanine-cytosine hydrogen-bonded base pairs enable their incorporation into DNA. Unusual base pairing patterns were compared with Watson-Crick H-bonded structures of the adenine-thymine and guanine-cytosine pairs. The complete basis set (CBS) limit of the MP2 interaction energy and the CCSD(T) correction term, determined as the difference between the CCSD(T) and MP2 interaction energies, was evaluated. Extrapolation to the MP2 CBS limit was done using the aug-cc-pVDZ and aug-cc-pVTZ results, and the CCSD(T) correction term was determined with the 6-31G*(0.25) basis set. Final interaction energies were corrected while taking into account both tautomeric penalization determined at the CBS level and solvation/desolvation free energies. The situation for the adenine-thymine pairs is straightforward, and tautomeric pairs are significantly less stable than the Watson-Crick pair consisting of the canonical forms. In the case of the guanine-cytosine pair, the Watson-Crick structure made by canonical forms is again the most stable. The other two structures are, however, energetically rather similar (by 5 and 6 kcal/mol), which provides a very small but non-negligible chance of detecting these structures in the DNA double helix (1:5000). Due to the fact that DNA bases and base pairs incorporated into DNA are solvated less favorably than in isolated systems, this probability represents the very upper limit. The results clearly show how precisely the canonical building blocks of DNA molecules were chosen and how well their stability is maintained.  相似文献   

7.
RNA contains different secondary structural motifs like pseudo-helices, hairpin loops, internal loops, etc. in addition to anti-parallel double helices and random coils. The secondary structures are mainly stabilized by base-pairing and stacking interactions between the planar aromatic bases. The hydrogen bonding strength and geometries of base pairs are characterized by six intra-base pair parameters. Similarly, stacking can be represented by six local doublet parameters. These dinucleotide step parameters can describe the quality of stacking between Watson–Crick base pairs very effectively. However, it is quite difficult to understand the stacking pattern for dinucleotides consisting of non canonical base pairs from these parameters. Stacking interaction is a manifestation of the interaction between two aromatic bases or base pairs and thus can be estimated best by the overlap area between the planar aromatic moieties. We have calculated base pair overlap between two consecutive base pairs as the buried van der Waals surface between them. In general, overlap values show normal distribution for the Watson–Crick base pairs in most double helices within a range from 45 to 50 Å2 irrespective of base sequence. The dinucleotide steps with non-canonical base pairs also are seen to have high overlap value, although their twist and few other parameters are rather unusual. We have analyzed hairpin loops of different length, bulges within double helical structures and pseudo-continuous helices using our algorithm. The overlap area analyses indicate good stacking between few looped out bases especially in GNRA tetraloop, which was difficult to quantitatively characterise from analysis of the base pair or dinucleotide step parameters. This parameter is also seen to be capable to distinguish pseudo-continuous helices from kinked helix junctions.  相似文献   

8.
We developed a novel method to design various helical tubular structures using the DNA origami method. The size‐controlled tubular structures which have 192, 256, and 320 base pairs for one turn of the tube were designed and prepared. We observed the formation of the expected short tubes and unexpected long ones. Detailed analyses of the surface patterns of the tubes showed that the short tubes had mainly a left‐handed helical structure. The long tubes mainly formed a right‐handed helical structure and extended to the directions of the double helical axes as structural isomers of the short tubes. The folding pathways of the tubes were estimated by analyzing the proportions of short and long tubes obtained at different annealing conditions. Depending on the number of base pairs involved in one turn of the tube, the population of left‐/right‐handed and short/long tubes changed. The bending stress caused by the stiffness of the bundled double helices and the non‐natural helical pitch determine the structural variety of the tubes.  相似文献   

9.
We measured the helical repeats of a non-natural nucleic acid, locked nucleic acid (LNA), by incorporating LNA strands into the outer arms of a DNA double crossover (DX) molecule; atomic force microscopy (AFM) imaging of the two-dimensional (2D) arrays self-assembled from these DX molecules allows us to derive the helical repeat of the LNA/DNA hetero-duplex to be 13.2 +/- 0.9 base pairs per turn.  相似文献   

10.
We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.  相似文献   

11.
The structure and biological function of the DNA double helix are based on interactions recognizing sequence complementarity between two single strands of DNA. A single DNA strand can also recognize the double helix sequence by binding in its groove and forming a triplex. We now find that sequence recognition occurs between intact DNA duplexes without any single-stranded elements as well. We have imaged a mixture of two fluorescently tagged, double helical DNA molecules that have identical nucleotide composition and length (50% GC; 294 base pairs) but different sequences. In electrolytic solution at minor osmotic stress, these DNAs form discrete liquid-crystalline aggregates (spherulites). We have observed spontaneous segregation of the two kinds of DNA within each spherulite, which reveals that nucleotide sequence recognition occurs between double helices separated by water in the absence of proteins, consistent with our earlier theoretical hypothesis. We thus report experimental evidence and discuss possible mechanisms for the recognition of homologous DNAs from a distance.  相似文献   

12.
A huge variety of chemically modified oligonucleotide derivatives has been synthesized for possible antisense applications. One such derivative, hexitol nucleic acid (HNA), is a DNA analogue containing the standard nucleoside bases, but with a phosphorylated 1',5'-anhydrohexitol backbone. Hexitol nucleic acids are some of the strongest hybridizing antisense compounds presently known, but HNA duplexes are even more stable. We present here the first high-resolution structure of a double helical nucleic acid with all sugars being hexitols. Although designed to have a restricted conformational flexibility, the hexitol oligomer h(GTGTACAC) is able to crystallize in two different double helical conformations. Both structures display a high x-displacement, normal Watson-Crick base pairing, similar base stacking patterns, and a very deep major groove together with a minor groove with increased hydrophobicity. One of the conformations displays a major groove which is wide enough to accommodate a second HNA double helix resulting in the formation of a double helix of HNA double helices. Both structures show most similarities with the A-type helical structure, the anhydrohexitol chair conformation thereby acting as a good mimic for the furanose C3'-endo conformation observed in RNA. As compared to the quasi-linear structure of homo-DNA, the axial position of the base in HNA allows efficient base stacking and hence double helix formation.  相似文献   

13.
柔红霉素与DNA作用的序列特异性研究   总被引:5,自引:0,他引:5  
采用紫外-可见光谱法和紫外-可见光谱电化学法研究了柔红霉素(DNR)与不同寡聚核苷酸之间的相互作用.结果表明,DNR优先作用于寡聚核苷酸的CpG位点,然后是ApG和ApC.因为DNR可与鸟嘌呤之间形成3个氢键.与双链寡聚核苷酸作用时,DNR最先插入的位点是(CpG)2碱基对之间,其次是(TpG)(CpA)和(GpC)(ApC)碱基对之间.当DNR与存在未配对G碱基的DNA链作用时,因游离的DNR量增加使其电化学活性增加,导致DNA构象和构型的变化,使DNA生理功能受到损伤,DNA碱基增色效应显著上升.此法可用于G碱基未配对DNA链的检测.  相似文献   

14.
Due to the presence of the 2'-OH hydroxyl group of ribose, RNA molecules utilize an astonishing variability of base pairing patterns to build up their structures and perform the biological functions. Many of the key RNA base pairing families have no counterparts in DNA. In this study, the trans Watson-Crick/sugar edge (trans WC/SE) RNA base pair family has been characterized using quantum chemical and molecular mechanics calculations. Gas-phase optimized geometries from density functional theory (DFT) calculations and RIMP2 interaction energies are reported for the 10 crystallographically identified trans WC/SE base pairing patterns. Further, stable structures are predicted for all of the remaining six possible members of this family not seen in RNAs so far. Among these novel six base pairs, the computations substantially refine two structures suggested earlier based on simple isosteric considerations. For two additional trans WC/SE base pairs predicted in this study, no arrangement was suggested before. Thus, our study brings a complete set of trans WC/SE base pairing patterns. The present results are also contrasted with calculations reported recently for the cis WC/SE base pair family. The computed base pair sizes are in sound correlation with the X-ray data for all WC/SE pairing patterns including both their cis and trans isomers. This confirms that the isostericity of RNA base pairs, which is one of the key factors determining the RNA sequence conservation patterns, originates in the properties of the isolated base pairs. In contrast to the cis structures, however, the isosteric subgroups of the trans WC/SE family differ not only in their H-bonding patterns and steric dimensions but also in the intrinsic strength of the intermolecular interactions. The distribution of the total interaction energy over the sugar-base and base-base contributions is controlled by the cis-trans isomerism.  相似文献   

15.
Complex formation of native and denatured DNA, single-stranded polyribonucleotides poly(A) and poly(U), as well as double-stranded poly(A).poly(U) with dodecylamine (DDA) and dodecyltrimethylammonium bromide (DTAB) has been studied by UV-, CD-, IR-spectroscopy and fluorescence analysis of hydrophobic probe pyrene. DDA and DTAB were shown to bind cooperatively with DNA and polyribonucleotides, resulting in the formation of complexes containing hydrophobic micelle-like clusters. Critical aggregation concentration (CAC) of DDA and DTAB shifts sharply to lower values (30-50 times) in the presence of DNA and polynucleotides as compared to critical micelle concentration (CMC) of free DDA and DTAB in solution. The analysis of binding isotherms within the frame of the model of cooperative binding of low-molecular ligands to linear polymers allowed us to determine the thermodynamic parameters of complex formation and estimate the contribution of electrostatic interaction of positively charged heads of amphiphiles with negatively charged phosphate groups of DNA and polyribonucleotides, and hydrophobic interaction of aliphatic chains to complex stability. Electrostatic interaction was shown to make the main contribution to the stability of DNA complexes with DDA, while preferential contribution of hydrophobic interactions is characteristic of DTAB complexes with DNA. The opposite effect of DDA and DTAB on the thermal stability of DNA double helix was demonstrated from UV-melting of DNA-while DTAB stabilizes the DNA helix, DDA, to the contrary, destabilizes it. The destabilizing effect of DDA seems to originate from the displacement of intramolecular hydrogen bonds in complementary Watson-Crick A.T and G.C base pairs with intermolecular H-bonds between unsubstituted DDA amino groups and proton-accepting sites of nucleic bases.  相似文献   

16.
We have determined the minimum number of base pairings necessary to stabilize DNA-Au NP aggregates as a function of salt concentration for particles between 15 and 150 nm in diameter. Significantly, we find that sequences containing a single base pair interaction are capable of effecting hybridization between 150 nm DNA-Au NPs. While traditional DNA hybridization involves two strands interacting in one dimension (1D, Z), we propose that hybridization in the context of an aggregate of polyvalent DNA-Au NP conjugates occurs in three dimensions (many oligonucleotides oriented perpendicular to the X, Y plane engage in base pairing), making nanoparticle assembly possible with three or fewer base pairings per DNA strand. These studies enabled us to compare the stability of duplex DNA free in solution and bound to the nanoparticle surface. We estimate that 4-8, 6-19, or 8-33 additional DNA bases must be added to free duplex DNA to achieve melting temperatures equivalent to hybridized systems formed from 15, 60, or 150 nm DNA-Au NPs, respectively. In addition, we estimate that the equilibrium binding constant (K(eq)) for 15 nm DNA-Au NPs (3 base pairs) is approximately 3 orders of magnitude higher than the K(eq) for the corresponding nanoparticle free system.  相似文献   

17.
Molecular dynamics free-energy calculations of base pair opening within double helical DNA and RNA are used to explain why A-tracts (oligo-adenine repeats) greatly increase the lifetimes of AT base pairs, whereas the structural and the chemical changes involved in passing from B-DNA to A-RNA have comparatively small effects.  相似文献   

18.
We report an NMR study on the interaction of topotecan (Tpt) and other camptothecins (Cpts) with several double helix and single strand oligonucleotides. The results obtained by (31)P NMR spectroscopy, nuclear Overhauser experiments (NOE) and molecular dynamics (MD) simulations show that Cpt drugs do not intercalate into the double helix, as suggested by many authors. Phosphorus NMR spectra indicated that no deformation occurs at any level of the phosphodiester backbone, while 2D NOESY experiments allowed the detection of several contacts between the aromatic protons of Cpts and those of the double helix. Models of the drug/oligonucleotide complexes, built on the basis of NOE data, show that the drug is located at the end of the double helix, by stacking the A and B rings with the guanine or cytidine of the terminal CG base pairs, with a preference for the 3[prime or minute]-terminal end sites. Cpts interact with double strand, as well as with single strand oligomers, as can be seen from the NMR shift variation observed on the drug protons; but this shielding effect cannot be an evidence of intercalation, as it is largely due to external non-specific interactions of the positively charged drug with the negatively charged ionic surface of the oligonucleotide. The molecular weight of one of the complexes was obtained from the correlation time value. The conformational behaviour of the DNA fragment d(CGTACG)(2) was studied by MD simulations on a ns time scale in the presence of water molecules and Na(+) ions. Different models were examined and the deformations induced on the phosphodiester backbone by molecules that are known to intercalate, were monitored by MD simulations.  相似文献   

19.
Hydrogen-bonding and stacking interactions between nucleobases are considered to be the major noncovalent interactions that stabilize the DNA and RNA double helices. In recent work we found that one or multiple biphenyl pairs, devoid of any potential for hydrogen bond formation, can be introduced into a DNA double helix without loss of duplex stability. We hypothesized that interstrand stacking interactions of the biphenyl residues maintain duplex stability. Here we present an NMR structure of the decamer duplex d(GTGACXGCAG) d(CTGCYGTCAC) that contains one such X/Y biaryl pair. X represents a 3',5'-dinitrobiphenyl- and Y a 3',4'-dimethoxybiphenyl C-nucleoside unit. The experimentally determined solution structure shows a B-DNA duplex with a slight kink at the site of modification. The biphenyl groups are intercalated side by side as a pair between the natural base pairs and are stacked head to tail in van der Waals contact with each other. The first phenyl rings of the biphenyl units each show tight intrastrand stacking to their natural base neighbors on the 3'-side, thus strongly favoring one of two possible interstrand intercalation structures. In order to accommodate the biphenyl units in the duplex the helical pitch is widened while the helical twist at the site of modification is reduced. Interestingly, the biphenyl rings are not static in the duplex but are in dynamic motion even at 294 K.  相似文献   

20.
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号