首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT

In this article, we consider the problem of pricing lookback options in certain exponential Lévy market models. While in the classic Black-Scholes models the price of such options can be calculated in closed form, for more general asset price model, one typically has to rely on (rather time-intense) Monte-Carlo or partial (integro)-differential equation (P(I)DE) methods. However, for Lévy processes with double exponentially distributed jumps, the lookback option price can be expressed as one-dimensional Laplace transform (cf. Kou, S. G., Petrella, G., & Wang, H. (2005). Pricing path-dependent options with jump risk via Laplace transforms. The Kyoto Economic Review, 74(9), 1–23.). The key ingredient to derive this representation is the explicit availability of the first passage time distribution for this particular Lévy process, which is well-known also for the more general class of hyper-exponential jump diffusions (HEJDs). In fact, Jeannin and Pistorius (Jeannin, M., & Pistorius, M. (2010). A transform approach to calculate prices and Greeks of barrier options driven by a class of Lévy processes. Quntitative Finance, 10(6), 629–644.) were able to derive formulae for the Laplace transformed price of certain barrier options in market models described by HEJD processes. Here, we similarly derive the Laplace transforms of floating and fixed strike lookback option prices and propose a numerical inversion scheme, which allows, like Fourier inversion methods for European vanilla options, the calculation of lookback options with different strikes in one shot. Additionally, we give semi-analytical formulae for several Greeks of the option price and discuss a method of extending the proposed method to generalized hyper-exponential (as e.g. NIG or CGMY) models by fitting a suitable HEJD process. Finally, we illustrate the theoretical findings by some numerical experiments.  相似文献   

2.
In this paper, we compared two different methods, one numerical technique, viz Legendre multiwavelet method, and the other analytical technique, viz optimal homotopy asymptotic method (OHAM), for solving fractional‐order Kaup–Kupershmidt (KK) equation. Two‐dimensional Legendre multiwavelet expansion together with operational matrices of fractional integration and derivative of wavelet functions is used to compute the numerical solution of nonlinear time‐fractional KK equation. The approximate solutions of time fractional Kaup–Kupershmidt equation thus obtained by Legendre multiwavelet method are compared with the exact solutions as well as with OHAM. The present numerical scheme is quite simple, effective, and expedient for obtaining numerical solution of fractional KK equation in comparison to analytical approach of OHAM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
We show how certain widely used multistep approximation algorithms can be interpreted as instances of an approximate Newton method. It was shown in an earlier paper by the second author that the convergence rates of approximate Newton methods (in the context of the numerical solution of PDEs) suffer from a “loss of derivatives”, and that the subsequent linear rate of convergence can be improved to be superlinear using an adaptation of Nash–Moser iteration for numerical analysis purposes; the essence of the adaptation being a splitting of the inversion and the smoothing into two separate steps. We show how these ideas apply to scattered data approximation as well as the numerical solution of partial differential equations. We investigate the use of several radial kernels for the smoothing operation. In our numerical examples we use radial basis functions also in the inversion step. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Two commonly used types of high-order-accuracy element-based schemes, collocation-based spectral multidomain penalty methods (SMPM) and nodal discontinuous Galerkin methods (DGM), are compared in the framework of the inviscid shallow water equations. Differences and similarities in formulation are identified, with the primary difference being the dissipative term in the Rusanov form of the numerical flux for the DGM that provides additional numerical stability; however, it should be emphasized that to arrive at this equivalence between SMPM and DGM requires making specific choices in the construction of both methods; these choices are addressed. In general, both methods offer a multitude of choices in the penalty terms used to introduce boundary conditions and stabilize the numerical solution. The resulting specialized class of SMPM and DGM are then applied to a suite of six commonly considered geophysical flow test cases, three linear and three non-linear; we also include results for a classical continuous Galerkin (i.e., spectral element) method for comparison. Both the analysis and numerical experiments show that the SMPM and DGM are essentially identical; both methods can be shown to be equivalent for very special choices of quadrature rules and Riemann solvers in the DGM along with special choices in the type of penalty term in the SMPM. Although we only focus our studies on the inviscid shallow water equations the results presented should be applicable to other systems of nonlinear hyperbolic equations (such as the compressible Euler equations) and extendable to the compressible and incompressible Navier-Stokes equations, where viscous terms are included.  相似文献   

5.
Numerical methods are proposed for the numerical solution of a system of reaction-diffusion equations, which model chemical wave propagation. The reaction terms in this system of partial differential equations contain nonlinear expressions. Nevertheless, it is seen that the numerical solution is obtained by solving a linear algebraic system at each time step, as opposed to solving a nonlinear algebraic system, which is often required when integrating nonlinear partial differential equations. The development of each numerical method is made in the light of experience gained in solving the system of ordinary differential equations, which model the well-stirred analogue of the chemical system. The first-order numerical methods proposed for the solution of this initialvalue problem are characterized to be implicit. However, in each case it is seen that the numerical solution is obtained explicitly. In a series of numerical experiments, in which the ordinary differential equations are solved first of all, it is seen that the proposed methods have superior stability properties to those of the well-known, first-order, Euler method to which they are compared. Incorporating the proposed methods into the numerical solution of the partial differential equations is seen to lead to two economical and reliable methods, one sequential and one parallel, for solving the travelling-wave problem. © 1994 John Wiley & Sons, Inc.  相似文献   

6.

In E & Liu (SIAM J Numer. Anal., 1995), we studied convergence and the structure of the error for several projection methods when the spatial variable was kept continuous (we call this the semi-discrete case). In this paper, we address similar questions for the fully discrete case when the spatial variables are discretized using a staggered grid. We prove that the numerical solution in velocity has full accuracy up to the boundary, despite the fact that there are numerical boundary layers present in the semi-discrete solutions.

  相似文献   


7.
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today's codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution times for such problems on a modern PC are measured in minutes when direct methods are used and drop to seconds when iterative methods with appropriate preconditioners are used.  相似文献   

8.
In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro‐differential equations (VIDEs) with non‐smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in L norm and weighted L2 norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.  相似文献   

9.
The theory of hybrid methods in ordinary differential equationsis extended to deal with the numerical solution of Volterraintegro-differential equations. A convergence proof is givenin which it is attempted to follow the convergence proof givenin Gragg & Stetter (1964) for the numerical solution ofy1 = f(x, y), y(0) = yo, as closely as possible. Several numericalexamples are included. Also the stability polynomial of a hybridmethod using two off-step points and the stability regions fortwo particular methods are given.  相似文献   

10.
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our approach and extend it to solving nonsingular linear systems, inversion and generalized (Moore-Penrose) inversion of general and structured matrices by means of Newton’s iteration, approximation of a matrix by a nearby matrix that has a smaller rank or a smaller displacement rank, matrix eigen-solving, and root-finding for polynomial and secular equations and for polynomial systems of equations. Some by-products and extensions of our study can be of independent technical intersest, e.g., our extensions of the Sherman-Morrison-Woodbury formula for matrix inversion, our estimates for the condition number of randomized matrix products, and preprocessing via augmentation.  相似文献   

11.
In this paper, we consider the numerical solution of the flame front equation, which is one of the most fundamental equations for modeling combustion theory. A schema combining a finite difference approach in the time direction and a spectral method for the space discretization is proposed. We give a detailed analysis for the proposed schema by providing some stability and error estimates in a particular case. For the general case, although we are unable to provide a rigorous proof for the stability, some numerical experiments are carried out to verify the efficiency of the schema. Our numerical results show that the stable solution manifolds have a simple structure when $\beta$ is small, while they become more complex as the bifurcation parameter $\beta$ increases. At last numerical experiments were performed to support the claim the solution of flame front equation preserves the same structure as K-S equation.  相似文献   

12.
This paper is dedicated to presenting and analyzing a numerical algorithm for the solution of even-order boundary value problems. The proposed solutions are spectral and they depend on introducing a new matrix of derivatives of certain shifted Legendre polynomial basis, along with the application of the collocation method. The nonzero elements of the introduced matrix are expressed in terms of the well-known harmonic numbers. Numerical examples provide favorable comparisons with other existing methods and ascertain the efficiency and applicability of the proposed algorithm.  相似文献   

13.
The spectral smoothed boundary method (SSBM) is a recently proposed numerical method to approximate the solution of partial differential equations in irregular domains with no‐flux boundary conditions by means of Fourier spectral methods. In this article we explore the robustness and accuracy of the scheme under variations of the artificial boundary conditions that must be imposed on the boundary of the enlarged domain in which the problem is solved. As a test model, we present quantitative numerical results based on a problem of propagation of waves of electrical activity in cardiac tissue for which the method is relevant. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
In this paper we report on a novel method for solving systems of highly nonlinear differential equations by blending two recent semi-numerical techniques; the spectral homotopy analysis method and the successive linearisation method. The hybrid method converges rapidly and is an enhancement of the utility of the original spectral homotopy analysis method (Motsa et al., Commun Nonlinear Sci Numer Simul 15:2293?C2302, 2010; Computer & Fluids 39:1219?C1225, 2010) and an improvement on other recent semi-analytical techniques. We illustrate the application of the method by solving a system of nonlinear differential equations that govern the problem of laminar viscous flow in a semi-porous channel subject to a transverse magnetic field. A comparison with the numerical solution confirms the validity and accuracy of the technique and shows that the method converges rapidly and gives very accurate results.  相似文献   

15.
In this paper, a nonlinear Schr ö dinger equation is solved by using the variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM) numerically. For each method, the approximate solution of this equation is calculated based on a recursive relation which its components are computed easily. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the given algorithms  相似文献   

16.
We discuss the numerical solution of large-scale discrete-time algebraic Riccati equations (DAREs) as they arise, e.g., in fully discretized linear-quadratic optimal control problems for parabolic partial differential equations (PDEs). We employ variants of Newton??s method that allow to compute an approximate low-rank factor of the solution of the DARE. The principal computation in the Newton iteration is the numerical solution of a Stein (aka discrete Lyapunov) equation in each step. For this purpose, we present a low-rank Smith method as well as a low-rank alternating-direction-implicit (ADI) iteration to compute low-rank approximations to solutions of Stein equations arising in this context. Numerical results are given to verify the efficiency and accuracy of the proposed algorithms.  相似文献   

17.
This article concerns with incorporating wavelet bases into existing streamline upwind Petrov‐Galerkin (SUPG) methods for the numerical solution of nonlinear hyperbolic conservation laws which are known to develop shock solutions. Here, we utilize an SUPG formulation using continuous Galerkin in space and discontinuous Galerkin in time. The main motivation for such a combination is that these methods have good stability properties thanks to adding diffusion in the direction of streamlines. But they are more expensive than explicit semidiscrete methods as they have to use space‐time formulations. Using wavelet bases we maintain the stability properties of SUPG methods while we reduce the cost of these methods significantly through natural adaptivity of wavelet expansions. In addition, wavelet bases have a hierarchical structure. We use this property to numerically investigate the hierarchical addition of an artificial diffusion for further stabilization in spirit of spectral diffusion. Furthermore, we add the hierarchical diffusion only in the vicinity of discontinuities using the feature of wavelet bases in detection of location of discontinuities. Also, we again use the last feature of the wavelet bases to perform a postprocessing using a denosing technique based on a minimization formulation to reduce Gibbs oscillations near discontinuities while keeping other regions intact. Finally, we show the performance of the proposed combination through some numerical examples including Burgers’, transport, and wave equations as well as systems of shallow water equations.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2062–2089, 2017  相似文献   

18.
古振东 《计算数学》2021,43(4):426-443
基于已有文献的研究成果及前期工作,我们考察了非线性弱奇性Volterra积分方程(VIE)的谱配置法,并对该方法进行了收敛性分析.得到的结论是数值误差呈谱收敛.误差收敛阶与配置点个数及方程解的正则性相关.数值实验也证实了这一结论.本文的方法解决了已有文献中类似数值方法(Allaei(2016),Sohrabi(2017))存在的问题.  相似文献   

19.
In this work the combined finite difference and spectral methods have been proposed for the numerical solution of the one‐dimensional wave equation with an integral condition. The time variable is approximated using a finite difference scheme. But the spectral method is employed for discretizing the space variable. The main idea behind this approach is that we can get high‐order results. The new method is used for two test problems and the numerical results are obtained to support our theoretical expectations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号