首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of synthetic compounds with exclusive target specificity is an extraordinary challenge of molecular recognition and demands novel design strategies, in particular for large and homologous protein families such as protein kinases with more than 500 members. Simple organic molecules often do not reach the necessary sophistication to fulfill this task. Here, we present six carefully tailored, stable metal-containing compounds in which unique and defined molecular geometries with natural-product-like structural complexity are constructed around octahedral ruthenium(II) or iridium(III) metal centers. Each of the six reported metal compounds displays high selectivity for an individual protein kinase, namely GSK3α, PAK1, PIM1, DAPK1, MLCK, and FLT4. Although being conventional ATP-competitive inhibitors, the combination of the unusual globular shape and rigidity characteristics, of these compounds facilitates the design of highly selective protein kinase inhibitors. Unique structural features of the octahedral coordination geometry allow novel interactions with the glycine-rich loop, which contribute significantly to binding potencies and selectivities. The sensitive correlation between metal coordination sphere and inhibition properties suggests that in this design, the metal is located at a "hot spot" within the ATP binding pocket, not too close to the hinge region where globular space is unavailable, and at the same time not too far out toward the solvent where the octahedral coordination sphere would not have a significant impact on potency and selectivity. This study thus demonstrates that inert (stable) octahedral metal complexes are sophisticated structural scaffolds for the design of highly selective chemical probes.  相似文献   

2.
Replacing natural products with kinetically inert metal complexes may lead to a new class of therapeutics in which a metal center plays the role of an innocent bystander, organizing the orientation of the organic ligands in the receptor space. As an example of this approach, a ruthenium complex is described that copies the binding mode of indolocarbazole protein kinase inhibitors and serves as a reversible, low-nanomolar inhibitor for glycogen synthase kinase 3 (GSK-3).  相似文献   

3.
A strategy for targeting protein kinases with large ATP-binding sites by using bulky and rigid octahedral ruthenium complexes as structural scaffolds is presented. A highly potent and selective GSK3 and Pim1 half-sandwich complex NP309 was successfully converted into a PAK1 inhibitor by making use of the large octahedral compounds Lambda-FL172 and Lambda-FL411 in which the cyclopentadienyl moiety of NP309 is replaced by a chloride and sterically demanding diimine ligands. A 1.65 A cocrystal structure of PAK1 with Lambda-FL172 reveals how the large coordination sphere of the ruthenium complex matches the size of the active site and serves as a yardstick to discriminate between otherwise closely related binding sites.  相似文献   

4.
Ruthenium complexes with polypyridine ligands are very popular choices for applications in photophysics and photochemistry, for example, in lighting, sensing, solar cells, and photoredox catalysis. There is a long-standing interest in replacing ruthenium with iron because ruthenium is rare and expensive, whereas iron is comparatively abundant and cheap. However, it is very difficult to obtain iron complexes with an electronic structure similar to that of ruthenium(II) polypyridines. The latter typically have a long-lived excited state with pronounced charge-transfer character between the ruthenium metal and ligands. These metal-to-ligand charge-transfer (MLCT) excited states can be luminescent, with typical lifetimes in the range of 100 to 1000 ns, and the electrochemical properties are drastically altered during this time. These properties make ruthenium(II) polypyridine complexes so well suited for the abovementioned applications. In iron(II) complexes, the MLCT states can be deactivated extremely rapidly (ca. 50 fs) by energetically lower lying metal-centered excited states. Luminescence is then no longer emitted, and the MLCT lifetimes become much too short for most applications. Recently, there has been substantial progress on extending the lifetimes of MLCT states in iron(II) complexes, and the first examples of luminescent iron complexes have been reported. Interestingly, these are iron(III) complexes with a completely different electronic structure than that of commonly targeted iron(II) compounds, and this could mark the beginning of a paradigm change in research into photoactive earth-abundant metal complexes. After outlining some of the fundamental challenges, key strategies used so far to enhance the photophysical and photochemical properties of iron complexes are discussed and recent conceptual breakthroughs are highlighted in this invited Concept article.  相似文献   

5.
In this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205 Lu melanoma cells, activation of the Wnt signaling pathway, IC(50) values against the protein kinases GSK-3beta and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors. This is a unique example in which the replacement of a metal in an anticancer scaffold by its heavier homologue does not alter its biological activity.  相似文献   

6.
Reaction of divalent cobalt(II) and trivalent ruthenium(III) salts (NO3, SCN and SO4) with macrocyclic ligands L1, L2 and L3 having N2S2, N4 and N5 core, have been designed and carry out. All these three macrocyclic ligands and their complexes were obtained in pure form. Their structures were investigated by using microanalytical analyses, IR, mass, magnetic moments, electronic and EPR spectral studies. The redox properties of the complexes were also examined by cyclic voltammetry. An interesting feature of complexes is that the relatively large rings of macrocyclic ligands prevent the macrocyclic rings from approaching the metal center as closely as they would, if they were not constrained. So the Ru-N distances are longer than expected due to ring size. Electrochemical studies show that the macrocyclic ligand L1 is more effective electron donors to ruthenium than of L2 and L3. Electronic spectral properties also show that the sulphur donor atom of L1 weakens the ligand field with respect to ligand-to-metal charge-transfer band. However it is expected that second-row transition metal-ligand bonds tend to be weaker than third-row transition metal-ligand bonds. There are well-established examples of reactions in which decreased of reactivity down a triad of transition metals is not observed. These novelties are usually attributed to pi-bonding effects for ligands such as carbon monoxide, solvent effects, or a change in mechanism.  相似文献   

7.
The field of molecular transition metal complexes with redox-active ligands is dominated by compounds with one or two units of the same redox-active ligand; complexes in which different redox-active ligands are bound to the same metal are uncommon. This work reports the first molecular coordination compounds in which redox-active bisguanidine or urea azine (biguanidine) ligands as well as oxolene ligands are bound to the same cobalt atom. The combination of two different redox-active ligands leads to mono- as well as unprecedented dinuclear cobalt complexes, being multiple (four or six) center redox systems with intriguing electronic structures, all exhibiting radical ligands. By changing the redox potential of the ligands through derivatisation, the electronic structure of the complexes could be altered in a rational way.  相似文献   

8.
A series of half‐sandwich ruthenium‐based catalysts for both alcohol oxidation and carbonyl compounds hydrogenation have been synthesized through metal‐induced C–H bond activation based on benzothiazole ligands. The neutral ruthenium complexes 1 – 4 were fully characterized by UV–vis, NMR, IR, and elemental analysis. Molecular structures of complexes 1 and 3 were further confirmed by X‐ray diffraction analysis. All complexes exhibited high activity for the catalytic oxidation of a variety of alcohols with tBuOOH as oxidants to give carbonyl compounds with high yields in water. Moreover, these half‐sandwich complexes also showed high efficiency for the catalytic hydrogenation of carbonyl compounds in a methanol–water mixture. The catalyst could be reused for at least five cycles without any loss of activity. The catalytic system also worked well for various kinds of substrates with either electron‐donating or electron‐withdrawing groups.  相似文献   

9.
Homo-dinuclear alkynyl complexes with a distinct metal–metal bond constitute a rapidly growing field, where the focus is placed on compounds based on ruthenium, molybdenum, tungsten or rhodium. Interesting characteristics of these complexes include paramagnetism, intense charge-transfer absorptions, tunable bridging ligands, which may not be easily accessible in mononuclear acetylide systems. These complexes have significant potential for use in both molecular electronics and supramolecular chemistry. In this short account, previous work in this area is assessed, and each of the major groups of complexes is discussed in terms of both the synthetic strategies and structural motifs.  相似文献   

10.
The synthesis and characterization of two dinuclear ruthenium polypyridyl complexes based on the bridging ligands 5,5'-bis(pyridin-2' '-yl)-3,3'-bis(1H-1,2,4-triazole) and 5,5'-bis(pyrazin-2' '-yl)-3,3'-bis(1H-1,2,4-triazole) and of their mononuclear precursors are reported. The dinuclear compounds have been prepared by a Ni(0) catalyzed coupling of a mononuclear ruthenium(II) polypyridyl complex containing a brominated triazole moiety. Electrochemical and photophysical studies indicate that, in these dinuclear complexes, the protonation state of the bridge may be used to tune the intercomponent interaction between the two metal centers and that these species act as proton driven three-way molecular switches that can be read by electrochemical or luminescence techniques.  相似文献   

11.
The reaction of 2,2′:4,4′′:4′,4′′′‐quaterpyridyl (qtpy), with d6 ruthenium(II) (RuII), and rhenium(I) (ReI) metal centers has been investigated. The pendant pyridyl groups on the products have also been methylated to produce a second series of complexes containing coordinated Meqtpy2+. The absorption spectra of the complexes are dominated by intraligand and charge‐transfer bands. The ruthenium(II) complexes display broad unstructured luminescence consistent with emission from a Ru(d)→diimine(π*) manifold in acetonitrile solutions. In aqueous solutions, their emissions are weaker and the lifetimes are shorter. This effect is particularly acute for complexes incorporating coordinated dipyridylpyrazine, dppz, ligands. Although the emission of the ruthenium(II) complexes containing Meqtpy2+ is generally shorter than their qtpy analogs, it is notable that solvent‐dependent effects are much less intense. The rhenium(I) complexes also display broad unstructured luminescence but, compared with the ruthenium(II) systems, they have a relatively short lifetime in acetonitrile. Electrochemical studies reveal that all of the RuII complexes display chemically reversible metal‐based oxidations. ReI complexes only display irreversible metal‐based oxidations. In most cases, the reduction processes were not fully chemically reversible. The electrochemical and optical studies reveal that the nature of the lowest excited state of these complexes—particularly, the systems incorporating dppz—is highly dependent on the nature of the coordinated ligands. Calculations indicate that, although the excited state of most of the complexes is centered on the qtpy or Meqtpy2+ ligands, the excited state of the complexes containing dppz ligands is switched away from the dppz by qtpy methylation. A crystallographic study on one of the dicationic ruthenium(II) structures reveals that it forms an inclusion complex with benzene.  相似文献   

12.
In view of the growing interest for the synthesis of metal complexes and their interaction with DNA, we have synthesized and characterized two complexes containing ruthenium as metal center. The complexes are of the type [Ru(dppz)L4](ClO4)2 where L are biologically important ligands such as pyrazole and dimethylpyrazole. The characterization of these complexes is done by 1H NMR, 13C NMR, elemental analysis and mass spectroscopy. The interaction of these complexes with CT DNA was monitored and binding constants were determined using absorption and fluorescence spectroscopy. The mode of binding was found to be intercalative for both complexes and was determined using hydrodynamic viscosity studies. The complexes were further studied for photocleavage studies with supercoiled plasmid pBR322 DNA.  相似文献   

13.
Many transition‐metal complexes and some metal‐free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C?O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal‐free perborylated C1 and C2 products, such as C(Bpin)4 and C2(Bpin)6, respectively, which have great potential as building blocks for Suzuki–Miyaura cross‐coupling and other reactions. The use of 13CO‐enriched ruthenium carbonyl has demonstrated that the boron‐bound carbon atoms of all of these reaction products arise from CO ligands.  相似文献   

14.
Mono- and dinuclear ruthenium(II) complexes of six bridging ligands that contain a central arene (phenyl, naphthalenyl or biphenyl) core to which are attached two di-2-pyridylamine groups have been prepared. These complexes possess six-membered chelate rings. Full assignments of their 1H NMR spectra are described which provides insight into the comformations of the ligands in these complexes. The extent of metal–metal communication in the dinuclear complexes was probed by electrochemical measurements and related to metal–metal distances.  相似文献   

15.
Nowadays in cancer treatment, both metal complexes and organic molecules are being widely used. Current years have seen a surge of interest in the application of organometallic compounds to treat cancer and other diseases. Undeniably, the unique properties of organometallic compounds, intermediate between those of classical inorganic and organic materials, provide new opportunities in the field of medicinal chemistry. Since the discovery of cisplatin, many transition metal complexes have been synthesized and assayed for anticancer activity. In recent years, ruthenium-based Schiff base complexes have emerged as promising antitumor and antimetastatic agents with potential uses in treatment of platinum-resistant tumors or as alternatives to platinum-based chemotherapy. Advantages of utilizing ruthenium complexes in drug development include reliable methods of synthesizing stable complexes; the ability to tune ligand affinities, electron transfer and substitution rates, and reduction potentials; and an increasing knowledge of the biological effects of such complexes. This great expansion of ruthenium-based Schiff base complexes is mainly due to the unique ability of the ruthenium core to permit multiple oxidation states, hence versatile electron-transfer pathways, and because of the ease of preparation with versatile and variable-denticity Schiff base ligands. This review aims to bring the reader up to date with the more recent Ru(II)/(III)-based Schiff base complexes that have been synthesized and investigated for their cytotoxicity.  相似文献   

16.
Two tetradentate bispinene-bipyridine type ligands, each with six stereogenic carbon centers, were synthesized from (-)-alpha-pinene. Their ability to predetermine chiral configurations at metal centers was studied. The two diastereoisomers, L1 and L2, differ in their absolute configuration at the bridgehead position. These ligands form metal complexes with Ag(I), Pd(II), Zn(II), Cu(II), and Cd(II), with coordination numbers four, five, and six and with complete control of chirality at the metal centers. Using L1 rather than L2 leads to complexes of inverted absolute configuration at the metal centers. These diastereomeric coordination species can be obtained either as separate compounds or, in some cases, as solids containing them in a 1:1 ratio. Ligands L1 and L2 thus show that the pinene-bipyridines are versatile molecules for the formation of metal complexes with predetermined chirality. In all cases, absolute configurations were determined in the solid state by X-ray diffraction methods and in solution by CD spectroscopy. The sign of exciton couplets from the pi-pi* transitions always agrees with the expectations for a given local configuration at the metal center. The five-coordinate, inherently chiral species of Zn(II) and Cu(II) described in this article are the first examples of trigonal-bipyramidal metal complexes with predetermined absolute configuration containing topologically linear ligands.  相似文献   

17.
[reaction: see text] Replacing complex natural products with simple metal complexes could lead to a new class of metallopharmaceuticals in which the metal center plays mainly a structural role. A strategy is introduced for the creation of ruthenium complex-based protein kinase inhibitors 1 (X = CO or CH(2)), morphed out of the class of indolocarbazole inhibitors with the alkaloid staurosporine as its most prominent member.  相似文献   

18.
Selective reduction of 2-nitro-3-methoxybenzaldehyde provides 2-amino-3-methoxybenzaldehyde that undergoes the Friedl?nder condensation with a variety of acetyl-substituted derivatives of pyridine and 1,10-phenanthroline. After cleavage of the methyl ether, the resulting polydentate analogues of 8-hydroxyquinoline are excellent ligands for ruthenium. The resulting oxidation state of the metal center depends on the anionic character of the ligands. The presence of two electron donating anionic ligands results in a Ru(III) complex as evidenced by paramagnetic NMR behavior. The electronic absorption and redox properties of the complexes were measured and found to be consistent with the anionic character of the 8-HQ moieties. A planar pentadentate ligand provides two Ru-O and two Ru-N bonds in the equatorial plane. An X-ray structure shows that the central pyridine of the ligand is oriented toward the metal but held at a distance of 2.44 ?.  相似文献   

19.
A new series of homoleptic metallodendrimers has been synthesized through ruthenium‐metal complexation by dendritically modified bathophenanthroline ligands. The presence of hydrophilic oligo(ethylene glycol) groups on the surface of the monodisperse metal complexes enabled the solubilization of all of the fractal species in a wide range of solvents, including water. The specific properties of all of these compounds have been systematically investigated by using photophysical techniques as a function of the generation number. Accordingly, the encapsulation of the highly luminescent [Ru(dpp)3]2+‐type (dpp=4,7‐diphenyl‐1,10‐phenanthroline) core unit within a dendritic microenvironment creates a powerful means to shield the center from dioxygen quenching. This shielding effect, as exerted on the phosphorescent ruthenium‐derived center, is reflected by enhanced emission intensities and extended excited‐state lifetimes that are close to the highest values reported so far, even in an air‐equilibrated aqueous medium. Interestingly, when inspecting the largest dendritic assembly, that is, the third‐generation assembly, significant drops in emission quantum yields and lifetimes are observed. This anomalous behavior has been attributed to the folding of the branches towards the luminescent core.  相似文献   

20.
Abstract

N-Acyl-thioureas are important compounds in the field of organic synthesis and medicinal chemistry. Research interest in these compounds has grown recently because coordination to metal ions enhances their application especially in view of medicinal studies. These thiourea derivatives possess rich coordination chemistry and the coordination behavior of these derivatives alters upon reaction with different metals. Such ligands generally coordinate to Pt(II) and Pd(II) ions in a bidentate S,O manner and often coordinate to Ru(II), Rh(III) and Ir(III) centers through the S donor atom. We isolated some complexes of these ligands by reaction with sodium azide which coordinates to Ru(II), Rh(III), and Ir(III) in a bidentate S,N fashion. The deprotonated thiourea nitrogen atom resulted in the formation of strained 4-membered ring structures around the metal center. Biological application of N-acyl thiourea derivatives and their platinum group metal complexes are further discussed. Studies has shown that these compounds can be used as drugs to treat several human diseases like microbial infections, tuberculosis, carcinomas, malaria, leishmaniasis, urease inhibitors and anti-inflammatory. This review intends to summarize the recent advancement in the chemistry of N-acyl-thioureas and highlight some perspectives in the synthesis, versatile coordination behavior to ruthenium, rhodium, iridium, platinum and palladium, and their metal complexes in biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号