首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new phase plate has been developed for noise-free coherent imaging system. The phase plate consists of a bleached holographic lens whose frequency is modulated in such a way that the information from each point of the object is distributed in a small three dimensional space at the Fourier plane. This introduces redundancy in the hologram and helps in smoothing out the amplitude variations in the Fourier plane. Experimental results are presented which show the capabilities of the phase plate.  相似文献   

2.
In order to image continuous-tone transparencies with coherent light, special types of diffuse speckle-free illumination are required to achieve high image quality. Several types of speckle-free modulation have been investigated which appear to provide high redundancy for such systems.  相似文献   

3.
超声平面波经颅成像时,由于颅骨对超声传播的影响引起图像质量下降,需要对颅骨造成的超声相位畸变进行校正.为此,该文研究了两种相位补偿方法:基于近似射线声学的理论方法和基于时间反转的数值计算方法,并利用数值仿真对比了两种方法的补偿和成像效果.结果表明:无论使用近似射线法还是时间反转法,都能够有效地校正因颅骨造成的相位畸变;...  相似文献   

4.
A constant sound speed of 1.54 mm/micros is generally used by ultrasound imaging systems for delay and timing. However, the body's sound speed in-homogeneity can lead to defocusing and increased clutter. To provide an improvement using standard transducers, the sound speed used in delay and timing was computed using different sound speeds. We observed improvement in lateral resolution and clutter in phantom, OB, abdominal, and breast imaging. In OB and abdominal imaging using a 4 MHz curved array, 1.48 mm/micros provided higher image quality in many situations. In breast with an 8 MHz linear array, 1.44 mm/micros provided better images in some cases. To provide an automated way to determine and adjust the sound speed used by the imaging system, an algorithm was developed that determines the sound speed that produces the best overall lateral image quality by analyzing the spatial frequency content in a single B-mode frame of channel data using images reconstructed using various trial sound speeds. The metric produced correlates well with the observed best lateral image quality.  相似文献   

5.
A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images.  相似文献   

6.
为了提高相位畸变条件下的医学超声成像的横向分辨率和对比度,提出了一种利用回波信号相干性的校正方法。首先给出平均相干系数的概念,并将其作为相位误差校正的度量,然后通过最大化平均相干系数逐步校正各个通道的延时误差,最后再利用经过校正的数据计算出一组新的相干系数并对回波信号进行加权优化,从而得到最终用于成像的数据。对点散射目标及斑散射目标的仿真结果分别显示,利用所提出的方法横向分辨率提高了约0.24 mm,对比度提高了约18 dB,且要优于邻近阵元互相关方法和相干系数直接加权的处理方法。利用回波相干性的相位畸变校正方法结合了相位误差校正和加权处理的优点,可以有效地改善医学超声成像的质量。   相似文献   

7.
A coherence-based correction method was proposed in order to improve the lateral resolution and enhance the contrast of medical ultrasound imaging in the presence of phase aberration.The averaged coherence factor was proposed at first and used as a metric to evaluate phase aberration correction.By maximizing the averaged coherence factor,the time delay parameter of each channel was adjusted.A new set of coherence factors was calculated and the corrected data was optimized to form the final B-mode image.The simulations on point targets and a cyst phantom showed that the proposed method outperformed the nearest neighboring cross correlation method and conventional coherence-weighting method,and the lateral resolution and contrast ratio was improved by approximately 0.24mm and 18dB respectively.The proposed method combined the advantages of phase error correction and coherence-weighting,which could improve imaging qualities effectively in medical ultrasound.  相似文献   

8.
Simulations of iterative transmit-beam aberration correction using a time-delay and amplitude filter have been performed to study the convergence of such a process. Aberration in medical ultrasonic imaging is usually modeled by arrival-time and amplitude fluctuations concentrated on the transducer array. This is an approximation of the physical aberration process, and may be applied to correct the transmitted signal using a time-delay and amplitude filter. Estimation of such a filter has proven difficult in the presence of severe aberration. Presented here is an iterative approach, whereby a filter estimate is applied to correct the transmit-beam. This beam induces acoustic backscatter better suited for arrival-time and amplitude estimation, thus facilitating an improved filter estimate. Two correlation-based methods for estimating arrival-time and amplitude fluctuations in received echoes from random scatterers were employed. Aberration was introduced using eight models emulating aberration produced by the human abdominal wall. Results show that only a few iterations are needed to obtain corrected transmit-beam profiles comparable to those of an ideal aberration correction filter. Furthermore, a previously developed focusing criterion is found to quantify the convergence accurately.  相似文献   

9.
Agarwal A  Yoo YM  Schneider FK  Kim Y 《Ultrasonics》2008,48(5):384-393
Quadrature demodulation-based phase rotation beamforming (QD-PRBF) is commonly used to support dynamic receive focusing in medical ultrasound systems. However, it is computationally demanding since it requires two demodulation filters for each receive channel. To reduce the computational requirements of QD-PRBF, we have previously developed two-stage demodulation (TSD), which reduces the number of lowpass filters by performing demodulation filtering on summation signals. However, it suffers from image quality degradation due to aliasing at lower beamforming frequencies. To improve the performance of TSD-PRBF with reduced number of beamforming points, we propose a new adaptive field-of-view (AFOV) imaging method. In AFOV imaging, the beamforming frequency is adjusted depending on displayed FOV size and the center frequency of received signals. To study its impact on image quality, simulation was conducted using Field II, phantom data were acquired from a commercial ultrasound machine, and the image quality was quantified using spatial (i.e., axial and lateral) and contrast resolution. The developed beamformer (i.e., TSD-AFOV-PRBF) with 1024 beamforming points provided comparable image resolution to QD-PRBF for typical FOV sizes (e.g., 4.6% and 1.3% degradation in contrast resolution for 160 mm and 112 mm, respectively for a 3.5 MHz transducer). Furthermore, it reduced the number of operations by 86.8% compared to QD-PRBF. These results indicate that the developed TSD-AFOV-PRBF can lower the computational requirement for receive beamforming without significant image quality degradation.  相似文献   

10.
High performance limiters are described in this paper for applications in high frequency ultrasound imaging systems. Limiters protect the ultrasound receiver from the high voltage (HV) spikes produced by the transmitter. We present a new bipolar power transistor (BPT) configuration and compare its design and performance to a diode limiter used in traditional ultrasound research and one commercially available limiter. Limiter performance depends greatly on the insertion loss (IL), total harmonic distortion (THD) and response time (RT), each of which will be evaluated in all the limiters. The results indicated that, compared with commercial limiter, BPT-based limiter had less IL (−7.7 dB), THD (−74.6 dB) and lower RT (43 ns) at 100 MHz. To evaluate the capability of these limiters, they were connected to a 100 MHz single element transducer and a two-way pulse-echo test was performed. It was found that the −6 dB bandwidth and sensitivity of the transducer using BPT-based limiter were better than those of the commercial limiter by 22% and 140%, respectively. Compared to the commercial limiter, BPT-based limiter is shown to be capable of minimizing signal attenuation, RT and THD at high frequencies and is thus suited for high frequency ultrasound applications.  相似文献   

11.
We propose new phase- and polarisation-insensitive receivers for coherent optical fibre communication systems which have the following characteristic features: (a) insensitivity to LO excess noise in addition to phase- and polarization-insensitivity; (b) absence of optical PLL and polarization control devices; (c) a smaller detector bandwidth requirement than for heterodyne systems; (d) the same source linewidth requirement as for heterodyne systems with non-coherent demodulation; (e) the possibility of a complete optoelectronic integrated circuit (OEIC) version in the future.  相似文献   

12.
We study the statistical mechanics of hydrogen dissolved in metals. The underlying model is based on the assumption that the dominant attractive interaction between the protons in the metal is of an elastic nature.

In the first part of the paper we review some general properties of the elastic interaction. We then discuss the importance of boundary conditions for the form of the elastic interaction, which turns out to be of the Curie-Weiss type with macroscopic range.

In the second part we investigate the a-a' (‘gas-liquid’) phase transition in the hydrogen lattice fluid. The long-range part of the elastic interaction is treated in mean field approximation. In the canonical ensemble as opposed to the grand canonical ensemble one finds no co-existing phases near the critical point. Instead there is a continuous transition which changes into a first-order transition at tricritical points. In the temperature-density region which normally corresponds to the two-phase co-existence region the hydrogen density is inhomogeneous and varies on a macroscopic scale.

The peculiar nature of the a-a' phase transition is due to the long-range character of the elastic interaction, which ultimately results from the requirement of coherency of the host crystal. We argue that coherent metal-hydrogen systems offer examples of real systems where the classical theory of phase transitions applies.  相似文献   

13.
We numerically analyze the effects of radius and phase shift of phase objects on the diffraction image of the 4f coherent imaging system, a system used for measuring the third-order nonlinear refractive index. The selection of the aperture radius is discussed. We prove that when the phase object radius is 0.1 time of the aperture radius and the phase change of the phase object is 0.57π, one can get the highest sensitivity for nonlinear refraction measurement.  相似文献   

14.
准确的脑血流成像对脑功能监测和脑疾病的快速诊断具有重要意义,然而颅骨对超声传播的影响会导致成像质量下降、速度或位移估计不准确等问题。论文采用平面波相干复合结合散斑跟踪方法进行颅内散射目标成像和速度估计,以实现脑血流速度矢量检测;针对颅骨存在导致的超声相位畸变,利用数值仿真和体模实验研究了其对成像及散斑跟踪效果的影响,并采用近似射线声学理论方法进行校正。数值结果表明颅骨的存在造成目标运动速度估计的相对误差达到55%左右,校正后误差降至约12%;体模实验中对目标位移大小和角度估计的平均误差在校正前分别约为16%和28%,校正后均降至1%左右。该研究结果可为超声颅脑疾病诊疗设备的研制提供理论指导和技术支持。  相似文献   

15.
傅健  李鹏 《中国物理 B》2013,22(1):14204-014204
Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.  相似文献   

16.
Liang M  Stehr RL  Krause AW 《Optics letters》1997,22(11):751-753
We have built a programmable multiple-aperture confocal imaging system that uses a spatial light modulator (a Texas Instruments digital micromirror device). Excellent axial resolution and confocal imaging quality have been experimentally demonstrated with this system, even when the distance between adjacent ON pixels is four times the size of the pixel aperture. By contrast, typical pinhole-based systems (e.g., a Nipkow disk) employ an adjacent aperture distance-to-size ratio of 10x . We have achieved improvement over such systems by 6.25x in both light-utilization efficiency and confocal image rate without adding more components and extra processing time.  相似文献   

17.
This work addresses three key subjects to the image quality with phased arrays: timing accuracy, beamforming strategy and post-processing for increased resolution and suppression of grating and side lobes.Timing accuracy is achieved by defining a modular and scalable architecture which guarantees low timing errors, whatever is the system size. The proposed beamforming methodology follows the progressive focusing correction technique, which keeps low focusing errors, provides a high information density and has a simple implementation for real-time imaging in modular architectures. Then, phase coherence imaging is defined to suppress grating and sidelobe indications, simultaneously increasing the lateral resolution.  相似文献   

18.
Coherent diffraction imaging (CDI) and ptychography techniques bypass the difficulty of having high-quality optics in X-ray microscopy by using a numerical reconstruction of the image that is obtained by inverting the diffracted intensity recorded by a charge-coupled device array. However, the reconstruction of the image from the intensity data obtained from a weakly diffracting specimen is known to be difficult because of the obvious reduction in signal-to-noise ratio (SNR). In this case, the specimen only slightly modifies the probe diffraction pattern, resulting in difficulty in the identification of the detailed structure of the specimen from the reconstructed image because of the poor contrast and sharpness of the image. To address this situation, a modification in the image retrieval algorithms used in the iterative reconstruction of the image is suggested. This modification should double the presence of high spatial frequencies in the diffraction pattern to enhance the contrast and edge detection in existing imaging techniques.  相似文献   

19.
We experimentally investigate the impact of spectral phase mismatch on the coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. By measuring the differential spectral phase, both linear and nonlinear contributions are identified. An accumulated nonlinear phase as high as 6 rad has been measured, for which a combination efficiency of 91% can be obtained by symmetrizing the pump and injection powers. This also allows us to quantitatively separate the spatial and temporal contributions of the nonperfect combining efficiency.  相似文献   

20.
In speckle-based metrology systems, a finite range of possible motion or deformation can be measured. When coherent imaging systems with a single limiting aperture are used in speckle metrology, the observed decorrelation effects that ultimately define this range are described by the well-known Yamaguchi correlation factor. We extend this result to all coherent quadratic phase paraxial optical systems with a single aperture and provide experimental results to support our theoretical conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号