首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor   总被引:1,自引:0,他引:1  
A simple solution synthesis of germanium (Ge0) nanowires under mild conditions (<400 degrees C and 1 atm) was demonstrated using germanium 2,6-dibutylphenoxide, Ge(DBP)2 (1), as the precursor where DBP = 2,6-OC6H3(C(CH3)3)2. Compound 1, synthesized from Ge(NR2)2 where R = SiMe3 and 2 equiv of DBP-H, was characterized as a mononuclear species by single-crystal X-ray diffraction. Dissolution of 1 in oleylamine, followed by rapid injection into a 1-octadecene solution heated to 300 degrees C under an atmosphere of Ar, led to the formation of Ge0 nanowires. The Ge0 nanowires were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis, and Fourier transform infrared spectroscopy. These characterizations revealed that the nanowires are single crystalline in the cubic phase and coated with oleylamine surfactant. We also observed that the nanowire length (0.1-10 microm) increases with increasing temperature (285-315 degrees C) and time (5-60 min). Two growth mechanisms are proposed based on the TEM images intermittently taken during the growth process as a function of time: (1) self-seeding mechanism where one of two overlapping nanowires serves as a seed, while the other continues to grow as a wire; and (2) self-assembly mechanism where an aggregate of small rods (<50 nm in diameter) recrystallizes on the tip of a longer wire, extending its length.  相似文献   

2.
a-Silica encapsulated silver nanowires (diameter of 25 +/- 5 nm, average length of 10 mum) have been synthesized by reacting (Me3Si)4Si with AgNO3 in nearly quantitative yield. Formation of the a-silica shell layer (1-3 nm) in situ appears to be one of the most important factors in this simple process.  相似文献   

3.
Single-step synthesis of one-dimensional Ge/SiCxNy core-shell nanocables was achieved by chemical vapor deposition of the molecular precursor [Ge{N(SiMe3)2}2]. Single crystalline Ge nanowires (diameter approximately 60 nm) embedded in uniform SiCxNy shells were obtained in high yields, whereby the growth process was not influenced by the nature of substrates. The shell material exhibited high oxidation and chemical resistance at elevated temperatures (up to 250 degrees C) resulting in the preservation of size-dependent semiconductor properties of germanium nanowires, such as intact transport of charge carriers and reduction of energy consumption, when compared to pure Ge nanowires.  相似文献   

4.
The temperature dependence of the field effect mobility was measured for solution-grown single-crystal Ge nanowires. The nanowires were synthesized in hexane from diphenylgermane by the supercritical fluid-liquid-solid process using gold nanocrystals as seeds. The nanowires were chemically treated with isoprene to passivate their surfaces. The electrical properties of individual nanowires were then measured by depositing them on a Si substrate, followed by electrical connection with Pt wires using focused ion beam assisted chemical vapor deposition. The nanowires were positioned over TaN or Au electrodes covered with ZrO2 dielectric that were used as gates to apply external potentials to modulate the conductance. Negative gate potentials increased the Ge nanowire conductance, characteristic of a p-type semiconductor. The temperature-dependent source/drain current-voltage measurements under applied gate potential revealed that the field effect mobility increased with increasing temperature, indicating that the carrier mobility through the nanowire is probably dominated either by a hopping mechanism or by trapped charges in fast surface states.  相似文献   

5.
Large-quantity single-crystal SnO(2) nanowires coated with quantum-sized ZnO nanocrystals (nc-ZnO/SnO(2) nanowires) were directly synthesized by thermal evaporation of SnO powder and a mixture of basic ZnCO(3) and graphite powders. A common stainless steel mesh was used to collect the products. The microstructure and possible growth mechanism of the nc-ZnO/SnO(2) nanowires were investigated. Results showed that tetragonal structured SnO(2) nanowires were obtained, whose surfaces were coated with single-layer ZnO nanocrystals with an average diameter of less than 5 nm. The nanowires had cross-rectangle section with width-to-thickness aspect ratio ranging from 2:1 to 5:1. The lengths of the nanowires were several tens of micrometers. ZnO nanocrystals were single crystalline wurtzite structures, which coated the whole nanowires and distributed uniformly. The possible growth mechanism of the composite nanowires may be enucleated that Zn atoms in the source vapor will replace the Sn atoms on the surface of the formed SnO(2) nanowires due to the higher reducibility of Zn than Sn. Two strong Raman scattering peaks at 626 and 656 cm(-1) appeared in the micro-Raman spectrum of nc-ZnO/SnO(2) nanowires. The origins of the peaks were discussed. Most importantly, the method can be extended to other composite oxide nanowires that are synthesized by oxidizing two kinds of metals, such as high reducibility elements Mg, Al, Zn, and Ti, and low reducibility elements In, Ge, Ga, etc.  相似文献   

6.
以硝酸铝、正硅酸乙酯(TEOS)和3-三氯锗丙酸为原料, 通过溶胶-凝胶法合成了Al12Si3.75Ge0.25O26莫来石固溶体粉体, 并利用热重-差热分析(TG-DSC)、X射线衍射(XRD)、红外光谱(FT-IR)等技术对陶瓷粉体的形成过程进行了表征. 对其进行还原处理并对产物的光致发光性能进行了研究, 观察到发光峰位于565、613、682、731和777 nm的室温光致发光现象. 比较不同还原温度下制备的样品, 结果发现500 益还原样品的发光强度最强. 通过晶格常数计算并结合XPS研究表明, 在500 ℃还原时已有Ge4+从基体中被还原为Ge0粒子. 拉曼光谱显示, 500 益还原样品中, Ge0主要是以平均粒径约为1.95 nm的团簇形式存在.  相似文献   

7.
The electrodeposition of Ge, Si and, for the first time, of Si(x)Ge(1-x) from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]Tf(2)N) containing GeCl(4) and/or SiCl(4) as precursors is investigated by cyclic voltammetry and high-resolution scanning electron microscopy. GeCl(2) in [Py(1,4)]Tf(2)N is electrochemically prepared in a two-compartment cell to be used as Ge precursor instead of GeCl(4) in order to avoid the chemical attack of Ge(iv) on deposited Ge. Silicon, germanium and Si(x)Ge(1-x) can be deposited reproducibly and easily in this ionic liquid. Interestingly, the Si(x)Ge(1-x) deposit showed a strong colour change (from red to blue) at room temperature during electrodeposition, which is likely to be due to a quantum size effect. The observed colours are indicative of band gaps between at least 1.5 and 3.2 eV. The potential of ionic liquids in Si(x)Ge(1-x) electrodeposition is demonstrated.  相似文献   

8.
We describe the application of pulsed-laser atom probe (PLAP) tomography to the analysis of dopants and unintentional impurities in Si and Ge nanowires grown by the vapor–liquid–solid mechanism. PLAP tomography was used to determine the concentration of phosphorous in Ge nanowires and B in Si nanowires, enabling comparisons of the atomic concentrations of the reactants with those of the reaction products. Oxygen impurities were also detected, but the contribution from background gas adsorption was not ruled out. Gold catalyst impurities were not detected, and an upper bound of 5 ppm was established. Intrinsic and extrinsic origins of the detection limits of dopants and other impurities are described in detail. A tapered nanowire geometry was found to improve the mass resolution and signal-to-noise ratio by increasing the tip cooling rate. Simulations of nanowire cooling under laser pulsing were used to validate this improved approach to PLAP analysis of nanowires.  相似文献   

9.
The electrochemical synthesis of gallium nanostructures in an ionic liquid is presented. Gallium nanowires and macroporous structures were synthesized by the template-assisted electrodeposition in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]TFSA) containing GaCl(3) as the precursor. Track-etched polycarbonate membranes with an average pore diameter of 90 nm and a thickness of 21 μm were used as templates for the nanowire synthesis. Ga nanowires with a length of more than 4 μm and an average diameter corresponding to that of the template's pores were easily obtained by this method. Macroporous structures with an average pore diameter of 600 nm were obtained by the electrochemical deposition of Ga inside polystyrene colloidal crystal templates and the subsequent removal of the template by THF. The macroporous deposit showed a granular morphology with smallest grain sizes of about 40 nm and light reflections. The nanostructures of Ga were characterized by HR-SEM and EDX analysis.  相似文献   

10.
Epitaxial semiconducting heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires were grown via a simple two-stage thermal evaporation of mixed SiO and ZnS or SiO and ZnSe powders under a precise temperature control. Each nanowire had a uniform diameter of 40-120 nm and length ranging from several to several tens of micrometers. Subnanowires of Si, ZnS, and ZnSe within them had a diameter of 20-50, 40-60, and 20-50 nm, respectively. The optical property (nanoscale cathodoluminescence) was also investigated from these new structures. It is proposed that the Si nanowires formed through disproportionation of SiO to Si in the first evaporation stage and then served as one-dimensional nanoscale substrates (or templates) for an epitaxial growth of ZnS or ZnSe nanowires in the following thermal evaporation of ZnS or ZnSe powders. The present results suggest that the simple method might be useful for the synthesis of many other heterostructures containing Si and II-VI or III-V semiconducting composite nanowires to meet the growing demands of nanoscale science and technology.  相似文献   

11.
Taper- and rodlike Si nanowires (SiNWs) are synthesized successfully on Si and Si(0.8)Ge(0.2) substrates. The growth mechanisms of taper- and rodlike SiNWs are proposed to be oxide-assisted growth (OAG) and vapor-liquid-solid (VLS) growth, respectively. For taperlike SiNWs annealed at 1200 degrees C for 3 h, the emission peaks are found at 772, 478, and 413 nm. On the other hand, for rodlike SiNWs annealed at 1200 degrees C for 4 h, emission peaks are found at 783, 516, and 413 nm. From the field-emission measurements, the taperlike Si nanowires exhibit superior field-emission behavior with a turn-on field of 6.3-7.3 V/mum. The field enhancement, beta, has been estimated to be 700 and 1000 at low and high fields, respectively. The excellent field-emission characteristics are attributed to the perfect crystalline structure and the taperlike geometry of the Si nanowires.  相似文献   

12.
陈友存  张元广 《化学学报》2006,64(13):1314-1318
以Na2WO4•2H2O和CdCl2 为主要原料, 分别在十六烷基三甲基溴化铵(CTAB)和十二烷基苯磺酸钠(SDBS)表面活性剂中, 在180 ℃反应16 h, 水热制备了CdWO4纳米棒和纳米线. 利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物进行了表征, 并对其在室温下的发光特性进行了测定. 实验结果表明: 产物均为具有单斜结构的单相CdWO4. 其中CdWO4纳米棒具有单晶属性, 平均粒径约为63 nm, 长度近1 µm; 而CdWO4纳米线具有多晶特性, 平均粒径约为12 nm, 长度达十几微米. 当激发波长为253 nm时均有460 nm强的发射峰, 其中CdWO4单晶纳米棒的发光强度大于CdWO4多晶纳米线. 分别对CdWO4纳米棒和纳米线形成的可能机理进行了初步分析.  相似文献   

13.
In this paper, we provide a theoretical basis using thermodynamic stability analysis for explaining the spontaneous nucleation and growth of a high density of 1-D structures of a variety of materials from low-melting metals such as Ga, In, or Sn. The thermodynamic stability analysis provides a theoretical estimate of the extent of supersaturation of solute species in molten metal solvent. Using the extent of maximum supersaturation, the size and density of critical nucleus were estimated and compared with experimental results using nucleation and growth of Ge nanowires using Ga droplets. The consistency of the proposed model is validated with the size and density of the resulting nanowires as a function of the synthesis temperature and droplet size. Both the experimental evidence and the theoretical model predictions point that the diameters of the resulting nanowires decrease with the lowering of synthesis temperatures and that the nucleation density decreases with the size of metal droplet diameter and increasing synthesis temperature.  相似文献   

14.
The origin of size effects in the thermal conductivity and diffusivity of nanostructural semiconductors was investigated through the establishment of a unified nanothermodynamic model. The contributions of size-dependent heat capacity and cohesive energy as well as the interface scattering effects were considered during the modeling. The results indicate the following: (1) both the thermal conductivity and diffusivity decrease with decreasing nanocrystal sizes (x) of Si and Si/SiGe nanowires, Si thin films and Si/Ge(SiGe) superlattices, and GaAs/AlAs superlattices when x > 20 nm; (2) the heat transport in semiconductor nanocrystals is determined largely by the increase of the surface (interface)/volume ratio; (3) the interface scattering effect predominates in the reduction of thermal conductivity and diffusivity while the intrinsic size effects on average phonon velocity and phonon mean free path are also critical; (4) the quantum size effect plays a crucial role in the enhancement of the thermal conductivity with a decreasing x (<20 nm). These findings provide new insights into the fundamental understanding of high-performance nanostructural semiconductors toward application in optoelectronic and thermoelectric devices.  相似文献   

15.
以铈盐和磷酸为前驱体, 经水热合成获得了高长径比的具有六方晶型和单斜晶型独居石结构的CePO4纳米线, 采用XRD、HRTEM、SEM和荧光光度计对其晶相组成、形貌及发光性能进行了表征. 结果表明, 六方晶型CePO4纳米线直径约为40 nm, 长度约为3 μm; 单斜晶型独居石结构CePO4纳米线直径约为50 nm, 长度可达10 μm, 产物均为高纯且结晶良好的CePO4晶体. 可通过控制水热反应时间达到控制CePO4纳米线晶型的目的. 随水热反应时间的延长, 磷酸铈纳米线从六方晶型转变为单斜晶型(独居石结构). 随煅烧温度的升高, 磷酸铈纳米线直径增大, 但经1000 ℃煅烧仍具有一维线性结构, 其热稳定性高. 磷酸铈纳米线在紫外光激发下具有可见光区蓝紫发射区, 但随煅烧温度的升高, 磷酸铈纳米线的发光强度明显降低.  相似文献   

16.
The substitution of germanium in the α-quartz structure is a method investigated to improve the piezoelectric properties and the thermal stability of α-quartz. Growth of α-quartz type Si(1-x)Ge(x)O(2) single crystals was performed using a temperature gradient hydrothermal method under different experimental conditions (pressure, temperature, nature of the solvent, and the nutrient). To avoid the difference of dissolution kinetics between pure SiO(2) and pure GeO(2), single phases Si(1-x)Ge(x)O(2) solid solutions were prepared and used as nutrients. The influence of the nature (cristobalite-type, glass) and the composition of this nutrient were also studied. Single crystals were grown in aqueous NaOH (0.2-1 M) solutions and in pure water. A wide range of pressures (95-280 MPa) and temperatures (315-505 °C) was investigated. Structures of single crystals with x = 0.07, 0.1, and 0.13 were refined, and it was shown that the structural distortion (i.e., θ and δ) increases with the atomic fraction of Ge in an almost linear way. Thus, the piezoelectric properties of Si(1-x)Ge(x)O(2) solid solution should increase with x, and this material could be a good candidate for technological applications requiring a high piezoelectric coupling factor or high thermal stability.  相似文献   

17.
This work describes the synthesis and magnetic-optical properties of Fe3O4 nanowires decorated by CdTe quantum dots. The composite nanowires with a length of 1 μm and an average diameter of 23±3 nm were prepared in a high yield through the preferential growth of Fe3O4 on CdTe quantum dots using ethylenediamine as template. Their growth mechanism was discussed based on the results of control experiments. Studies on the optical and magnetic properties of the composite nanowires reveal that they assume not only yellow-green emission feature but also room temperature ferromagnetism.  相似文献   

18.
Silver nanowires were synthesized by the hydrothermal route in aqueous solution of gemini surfactant 1,3-bis(cetyldimethylammonium) propane dibromide (16-3-16) at a relatively low temperature. The as-prepared silver nanowires were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED), and UV-vis absorption spectrum. The obtained silver nanowires are of high aspect ratios with an average diameter of approximately 30 nm and length ranging from several to tens of micrometers.  相似文献   

19.
(19)F NMR chemical shifts are calculated in order to study the F(-) environment in double four ring (D4R) containing Si/Ge-zeolites. The calculations with the DFT/CSGT/B3PW91 methodology yielded an agreement within 2 ppm with respect to the experimental peaks corresponding to the D4R units containing 8Si0Ge, 7Si1Ge and 0Si8Ge of the octadecasil zeolite. The optimisation of the 7Si1Ge-, 6Si2Ge-, 5Si3Ge- and 4Si4Ge-D4R units with DFT/B3LYP methodology shows that a covalent Ge-F bond is formed and therefore a Ge atom in the D4R is pentacoordinated. The displacement of the fluoride ion towards a Ge atom in the Ge-containing D4R units locates four Si/Ge atoms in the close vicinity of the F(-) and this makes possible a rationalization of the (19)F NMR signals in groups according to the number of Si (n) and Ge (m) atoms in the nearest F(-) environment, F-Si(n)Ge(m) (where n+m=4). Thus, the calculated chemical shifts show that higher values are observed when the number of Ge atoms in the nearest F(-) environment increases.  相似文献   

20.
预沉积Ge对Si(111)衬底上SSMBE外延生长SiC薄膜的影响   总被引:1,自引:0,他引:1  
利用固源分子束外延(SSMBE)生长技术, 在Si(111)衬底上预沉积不同厚度(0、0.2、1 nm)Ge, 在衬底温度900 ℃, 生长SiC单晶薄膜. 利用反射式高能电子衍射仪(RHEED)、原子力显微镜(AFM)和傅立叶变换红外光谱(FTIR)等实验技术, 对生长的样品进行了研究. 结果表明, 预沉积少量Ge(0.2 nm)的样品, SiC薄膜表面没有孔洞存在, AFM显示表面比较平整, 粗糙度比较小, FTIR结果表明薄膜内应力比较小. 这说明少量Ge的预沉积抑制了孔洞的形成, 避免衬底Si扩散, 因而SiC薄膜的质量比较好. 没有预沉积Ge的薄膜, 结晶质量比较差, SiC薄膜表面有孔洞且有Si存在. 然而预沉积过量Ge (1 nm) 的样品, 由于Ge的岛状生长,导致生长的SiC表面粗糙度变大, 结晶质量变差, 甚至导致多晶产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号