首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
应用有限体积方法求解三维可压缩雷诺平均N-S方程,计算了巡航导弹外形飞行器作小振幅俯仰运动时的动态绕流流场和空气动力特性,开展了导弹绕不同转轴、以不同频率和在不同迎角范围内进行俯仰运动的非定常气动力迟滞特性研究。计算结果表明,当导弹作快速俯仰运动时,在上仰和下俯过程中的同一迎角瞬间,绕导弹流场流动明显不同,表现出明显的非定常迟滞特性。导弹的非定常气动力迟滞特性随俯仰运动频率的增大明显增强,且气动力迟滞曲线随着俯仰轴位置的变化而变化。在同一减缩频率下,导弹在不同迎角范围内作周期俯仰运动时,相同的运动相位角所对应的升力系数对迎角的导数是一致的,而不同减缩频率下升力系数对迎角的导数随运动相位角变化曲线明显不同。  相似文献   

2.
大型风力机设计对获取翼型更加全面、准确的动态载荷提出更高要求,研究翼型横摆振荡动态气动特性具有重要意义.借助"电子凸轮"技术和动态数据同步采集手段,针对翼型动态"掠效应"首次开展了横摆振荡风洞试验研究,研究表明:横摆振荡翼型的气动曲线存在明显迟滞效应,吸力面压力周期性波动是主要诱因,且随着振荡频率、初始迎角和振幅的增大,气动迟滞特性均增强;升力和压差阻力随横摆角变化的迟滞回线呈"W"形,俯仰力矩迟滞回线呈"M"形,升力差量迟滞回线呈"∞"形;负行程下翼型气动力相对于正行程下的更高,且负行程下翼型气动力随振荡频率的增大而略有增大,正行程下则明显减小;升力系数功率谱密度分布在振荡频率倍频处的能量集中的幅值随着振荡频率增大有增大趋势;吸力面1.2%和40%弦长处压力的滞回特性较强,是由于翼面剪切层涡和动态分离涡周期性发展、运动、破裂和重建;振幅为10?时,升力迟滞曲线呈"∧"形,振幅为30?时,升力迟滞曲线呈"∧∧∧"形.  相似文献   

3.
在南航3m低速风洞内,利用一套两自由度动态试验机构,通过测力实验研究了某飞机模型静态和俯仰动态过程中大迎角下的横侧向气动特性,分析比较了在模型头部加上扰动片后,对横侧向气动特性产生的影响.研究结果表明,模型在静态大迎角下会产生较大的侧向力和偏航力矩,而模型的快速上仰过程则进一步加剧了模型头部流动的非对称性,在大迎角下产生较大的偏航力矩迟滞环;当在模型头部加扰动片后,不论是静态过程还是动态过程,都使得模型的侧向力和偏航力矩减小,从而改善了俯仰运动过程中大迎角下的横侧向气动特性.  相似文献   

4.
李国强  陈立  黄霞 《力学学报》2018,50(5):977-989
大型风力机设计对获取翼型更加全面、准确的动态载荷提出更高要求, 研究翼型横摆振荡动态气动特性具有重要意义. 借助"电子凸轮"技术和动态数据同步采集手段, 针对翼型动态“掠效应”首次开展了横摆振荡风洞试验研究, 研究表明: 横摆振荡翼型的气动曲线存在明显迟滞效应, 吸力面压力周期性波动是主要诱因, 且随着振荡频率、初始迎角和振幅的增大, 气动迟滞特性均增强; 升力和压差阻力随横摆角变化的迟滞回线呈"W"形, 俯仰力矩迟滞回线呈"M"形, 升力差量迟滞回线呈"$\infty$"形; 负行程下翼型气动力相对于正行程下的更高, 且负行程下翼型气动力随振荡频率的增大而略有增大, 正行程下则明显减小; 升力系数功率谱密度分布在振荡频率倍频处的能量集中的幅值随着振荡频率增大有增大趋势; 吸力面1.2%和40%弦长处压力的滞回特性较强, 是由于翼面剪切层涡和动态分离涡周期性发展、运动、破裂和重建; 振幅为$10^{\circ}$时, 升力迟滞曲线呈"$^{\wedge}$"形, 振幅为$30^{\circ}$ 时, 升力迟滞曲线呈"$^{\wedge\wedge\wedge}$"形.   相似文献   

5.
应用有限体积方法求解三维可压缩雷诺平均N-S方程,计算了某型巡航导弹的静、动态绕流流场和空气动力特性.湍流模型应用修正后的B-L代数湍流模型.以细长旋成体绕流流场为例进行数值计算,并和实验数据相比较,验证了本文方法的可靠性,在此基础上,开展了某型巡航导弹绕不同转轴和以不同频率进行俯仰振动的非定常气动力迟滞特性研究.计算结果表明,当导弹作快速俯仰振动时,在上仰和下俯过程中的同一迎角瞬间,绕导弹流场流动明显不同,表现出明显的非定常迟滞特性.并且,导弹的非定常气动力迟滞特性随振动频率的增大变化明显,且气动力迟滞曲线随着振动轴位置的变化而变化.  相似文献   

6.
李京伯  章子林 《实验力学》1994,9(3):253-261
展弦比为1.5和2.0的两个平板三角翼作快速俯仰振荡运动的非定常空气动力实验研究在南京航空航天大学3×2.5米低速风洞中进行。俯仰运动的振幅为60°和90°,无因次俯仰率参数范围为0.01 ̄0.03。以三角翼根弦为参考长度的雷诺数为0.72×10^6。用六分量应变天平测量模型的空气动力和力矩。实验结果表明:法向力和俯仰力矩系数相对于静态值的过冲量以及滞环大小与无因次俯仰率、振幅及展弦比密切相关,而  相似文献   

7.
风力机叶片翼型动态试验技术研究   总被引:9,自引:7,他引:2  
风力机叶片动态振荡过程往往伴随着俯仰和横摆同时进行, 以前对许多动态问题不清楚的阶段, 工程上不惜以增加叶片重量为代价而采用偏安全的设计, 通常忽略横摆振荡的影响; 大型风力机设计对获取翼型更加全面、准确的动态载荷提出了更高要求, 研究横摆振荡对翼型动态气动特性的影响规律具有重要意义. 本文首次开展翼型横摆振荡动态风洞试验研究, 采用“电子凸轮”技术代替机械凸轮实现了振荡频率和振荡角度的无级变化, 基于设计的电子外触发装置实现了对动态流场的实时测量, 实现了风洞来流、模型角位移和动态压力数据的同步采集, 分别开展了翼型静态测压、俯仰/横摆动态测压、粒子图像测速和荧光丝线等试验研究, 试验结果准度较高、规律合理; 分析了动态试验洞壁干扰影响机制. 研究表明, 横摆振荡翼型的气动曲线也存在明显迟滞效应; 随着振荡频率升高, 翼型俯仰和横摆振荡下的气动迟滞性均增强; 翼型俯仰振荡正行程的动态失速涡破裂有所延迟; 洞壁与模型端部交界处的强三维效应对翼型压力分布影响较大; 建立的横摆振荡试验技术可为风力机动态掠效应的研究提供技术支撑.   相似文献   

8.
风力机叶片动态振荡过程往往伴随着俯仰和横摆同时进行,以前对许多动态问题不清楚的阶段,工程上不惜以增加叶片重量为代价而采用偏安全的设计,通常忽略横摆振荡的影响;大型风力机设计对获取翼型更加全面、准确的动态载荷提出了更高要求,研究横摆振荡对翼型动态气动特性的影响规律具有重要意义.本文首次开展翼型横摆振荡动态风洞试验研究,采用"电子凸轮"技术代替机械凸轮实现了振荡频率和振荡角度的无级变化,基于设计的电子外触发装置实现了对动态流场的实时测量,实现了风洞来流、模型角位移和动态压力数据的同步采集,分别开展了翼型静态测压、俯仰/横摆动态测压、粒子图像测速和荧光丝线等试验研究,试验结果准度较高、规律合理;分析了动态试验洞壁干扰影响机制.研究表明,横摆振荡翼型的气动曲线也存在明显迟滞效应;随着振荡频率升高,翼型俯仰和横摆振荡下的气动迟滞性均增强;翼型俯仰振荡正行程的动态失速涡破裂有所延迟;洞壁与模型端部交界处的强三维效应对翼型压力分布影响较大;建立的横摆振荡试验技术可为风力机动态掠效应的研究提供技术支撑.  相似文献   

9.
耦合求解NS方程和刚体动力学方程数值模拟80°后掠三角翼强迫俯仰、自由滚转双自由度耦合运动特性,研究了转动惯量、轴承机构阻尼、翼面流态以及俯仰运动频率、振幅、平均俯仰角等因素对三角翼俯仰、滚转双自由度耦合运动特性的影响。结果表明:机翼的转动惯量和轴承的机械阻尼显著影响自由滚转的频率和振幅;在转动惯量、轴承摩擦和湍流等多种因素的共同影响下,三角翼的双自由度运动可能会形成台阶形式的振荡曲线;俯仰运动的振幅、频率以及平均俯仰角对强迫俯仰、自由滚转双自由度耦合运动特性存在不同程度的影响。  相似文献   

10.
陈琦  陈坚强  袁先旭  谢昱飞 《力学学报》2016,48(6):1281-1289
飞行器在大气环境中飞行时,经常受阵风等的干扰,引发非指令的自激振荡,威胁飞行安全.通过建立刚体六自由度运动方程和N-S方程的松耦合求解技术,研究强迫俯仰振荡过程对滚转特性的影响.针对背风区涡流形态及横侧向气动特性复杂的方形截面飞行器,数值模拟研究了其不同攻角下的静态滚转气动特性、自由滚转运动特性,以及俯仰振荡时不同振荡速率对滚转气动和运动特性的影响.结果表明,此飞行器在静态时临界攻角约为13°,当攻角小于临界攻角时,滚转方向是静不稳定的,诱发快速滚转运动;当攻角大于临界攻角时,滚转方向是静稳定,其滚转运动是收敛的.研究发现,俯仰振荡一般会降低飞行器滚转方向静稳定或静不稳定的量值,增强滚转方向的动态稳定性.在俯仰振荡的影响下,即使滚转方向是静不稳定的,如果俯仰振荡的频率足够大,飞行器的滚转运动也可能是收敛的.  相似文献   

11.
风力机叶片的三维非定常气动特性估算   总被引:1,自引:0,他引:1  
结合动量-叶素理论、非定常空气动力和动态失速模型来计算风力机叶片的二维非定常气动特性,并在此基础上经过适当修正后考虑三维旋转效应的非定常气动特性。分析比较二维和三维两种计算结果,给出更为合理的计算叶片非定常气动特性的方法。计算结果表明,风力机叶片的三维非定常气动特性计算结果与二维时的计算结果相比有较大改善。  相似文献   

12.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

13.
The study of the dynamic behavior of a wind turbine with horizontal axis can be undertaken by various methods of analysis. The effects of the change of the aerodynamic flow (in the steady and unsteady cases), the variation of parameters of the cinematic movement (angle of attack, pitch angle and yaw angle) and the definition of subsystems characteristics that makes the wind turbine (blade, nacelle and pylon) allow one to characterize the structural dynamic behavior of the wind turbine. It is therefore necessary to develop these items. Once this is done, the structural dynamic behavior of the system can be improved. The term `improve' means the increase of the life duration by mastering the fatigue effects and the reduction of cost without sacrificing the aerodynamic output. The present study aims to examine the behavior of the blade, which is the main part of the wind turbine in that it that transmits forces to all other parts of the structure. The model is based on the theory of three-dimensional beams, under the assumption of variable sections of the type NACA 4415 airfoil, and takes into account membrane, transversal shear, flexion and free torsion effects. With regards to the aerodynamic loads (the lift, the drag and the pitching moment), a validation has been undertaken by considering experimental data and numerical results obtained by a CFD code (Fluent). The forces are obtained by means of a parametric CAD method interpolation of the aerodynamic poles by Bézier patch under geometrical constraints solved by a Simplex type algorithm. The emphasis is put on dynamic aspects by a complete processing of the dynamic equilibrium equation, applied to the wind turbine blade with horizontal axis.  相似文献   

14.
Wind tunnel experiments were performed to characterize the flow-induced rotations and pitching of various flat plates as a function of the thickness ratio and the location of the axis of rotation. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that small axis offset can induce high-order modes in the plate rotation due to torque unbalance, and can trigger self-initiated pitching. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch. The associated characteristic length scale is the projected width at maximum pitching angle. The increase of the plate thickness ratio implies lower angular velocity in rotation cases. A simple model based on aerodynamic forces is used to explain the linear relation between pitching frequency and wind speed, the pitching frequency increase with axis offset, and the onset of pitching.  相似文献   

15.
In this work, numerical study of two dimensional laminar incompressible flow around an oscillating NACA0012 airfoil is proceeded using the open source code Open FOAM. Oscillatory motion types including pitching and flapping are considered. Reynolds number for these motions is assumed to be 12000 and effects of these motions and also different unsteady parameters such as amplitude and reduced frequency on aerodynamic coefficients are studied. For flow control on airfoil, dielectric barrier discharge plasma actuator is used in two different positions on airfoil and its effect is compared for the two types of considered oscillating motions. It is observed that in pitching motion, imposing plasma leads to an improvement in aerodynamic coefficients, but it does not have any positive effect on flapping motion.Also, for the amplitudes and frequencies investigated in this paper, the trailing edge plasma had a more desirable effect than other positions.  相似文献   

16.
在复杂工况下,大型风力机非定常特性会更严重,导致风力机气动性能变化和尾迹预测更加复杂。本文主要针对稳态偏航、动态偏航、风剪切和随机风速场等复杂工况,基于自由涡尾迹方法,嵌入复杂工况的模块,加入了动态失速模型和三维旋转效应模型修正,实现了复杂工况数值模拟计算,比较了不同复杂工况的气动载荷和尾迹形状。最后,得出了风力机在复杂工况下的气动性能、载荷和尾迹叶尖涡线特性,并计算出风力机在复杂工况下的气动载荷超调量和迟滞时间。对推进自由涡尾迹方法应用于风力机工程的大批工况载荷计算,提高大型风力机的载荷计算精度和设计水平等具有重要意义。  相似文献   

17.
Zeng  Xiao-Hui  Shi  He-Mu  Wu  Han 《Nonlinear dynamics》2021,105(4):3025-3060

The dynamic characteristics of a railway vehicle system under unsteady aerodynamic loads are examined in this study. A dynamic analysis model of the railway vehicle considering the influences of aerodynamic loads was established. The model not only considers the forced excitation effect of unsteady aerodynamic loads but also accounts for the effect of unsteady aerodynamic loads on the change of the wheel–rail contact normal forces as well as changes of the wheelset creep coefficients and creep forces/moments. Therefore, this model also considers the influences of unsteady aerodynamic loads on the self-excited vibration characteristics of the vehicle system. The time-history curves, phase trajectory diagrams, Poincaré sections, and Lyapunov exponents of the vehicle system running on a smooth straight track under unsteady aerodynamic loads were determined. The results show that when the critical speed is exceeded, the vehicle system usually performs quasi-periodic motion under unsteady aerodynamic loads, which is significantly different from the periodic motion under steady aerodynamic loads. In different cases, the amplitude and phase of motion are significantly different. The amplitude of the motions can be increased by more than 159%, and the difference of phase can be up to 173°. (The phase is almost reversed.) The dynamic responses of the vehicle system under unsteady aerodynamic loads contain abundant frequency components, including the frequency of the self-excited vibration, the frequency of the forced excitation, and combinations of their integer multiples. The vibration forms corresponding to the main harmonic components under unsteady and steady aerodynamic loads were compared, and the self-excited vibration component of the vehicle system under unsteady aerodynamic loads was identified. The variations in the critical speed with various parameter combinations were computed. The variation range of the critical velocity can reach 73%.

  相似文献   

18.
An experimental investigation was conducted to characterize the evolution of the unsteady vortex structures in the wake of a pitching airfoil with the pitch-pivot-point moving from 0.16C to 0.52C (C is the chord length of the airfoil). The experimental study was conducted in a low-speed wind tunnel with a symmetric NACA0012 airfoil model in pitching motion under different pitching kinematics (i.e., reduced frequency k=3.8–13.2). A high-resolution particle image velocimetry (PIV) system was used to conduct detailed flow field measurements to quantify the characteristics of the wake flow and the resultant propulsion performance of the pitching airfoil. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged velocity distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about the behavior of the unsteady vortex structures. Both the vorticity–moment theorem and the integral momentum theorem were used to evaluate the effects of the pitch-pivot-point location on the propulsion performance of the pitching airfoil. It was found that the pitch-pivot-point would affect the evolution of the unsteady wake vortices and resultant propulsion performance of the pitching airfoil greatly. Moving the pitch-pivot-point of the pitching airfoil can be considered as adding a plunging motion to the original pitching motion. With the pitch-pivot-point moving forward (or backward), the added plunging motion would make the airfoil trailing edge moving in the same (or opposite) direction as of the original pitching motion, which resulted in the generated wake vortices and resultant thrust enhanced (or weakened) by the added plunging motion.  相似文献   

19.
A large eddy simulation method based on a fully unstructured finite volume method was developed, and the unsteady aerodynamic response of a road vehicle subjected to transient crosswinds was investigated. First, the method was validated for a 1/20-scale wind-tunnel model in a static aerodynamic condition; this showed that the surface pressure distributions as well as the aerodynamic forces and moments were in good agreement with wind-tunnel data. Second, the method was applied to two transient crosswind situations: a sinusoidal perturbation representing the typical length scale of atmospheric turbulence and a stepwise crosswind velocity corresponding to wind gusts. Typical transient responses of the aerodynamic forces and moments such as phase shifting and undershooting or overshooting were observed, and their dependence on the frequency and amplitude of the input perturbation is discussed. Thus, the utility and validity of the large eddy simulation was demonstrated in the context that such transient aerodynamic forces are difficult to measure using a conventional wind tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号