首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
两亲磁性高分子微球的合成与表征   总被引:7,自引:0,他引:7  
在Fe3O4磁流体存在下 ,通过苯乙烯与聚氧乙烯大分子单体 (MPEO)分散共聚制备两亲磁性高分子微球 .研究了聚氧乙烯大分子单体对微球粒径的影响 .用扫描电子显微镜 (SEM)、原子力显微镜 (AFM)表征了磁性微球的粒径、表面形貌以及表面粗糙度 ,用傅立叶红外光谱 (FTIR)鉴定了共聚物的结构 .随着聚合物中聚氧乙烯大分子单体含量的增加 ,微球表面的粗糙度增加 ,通过改变共聚物中MPEO的含量 ,可以得到含有 0 4~ 3 5mg g羟值的两亲磁性高分子微球  相似文献   

2.
IntroductionMagnetic microspheres have been widely usedin many fields,such as targetdrug,cell separationand enzyme immunoassay,since the past twentyyears because of their relatively rapid and easymagnetic separation[1] .Although a poly(ethyleneoxide) supported- catalyst system with a solublepolymer as the carrier can easily keep the activityand the selectivity of the catalyst,its recovery hasto be performed by filtration or precipitation fromthe reaction medium,which is time- consuming andener…  相似文献   

3.
A simple strategy to fabricate magnetic porous microspheres of Fe(3)O(4)@poly(methylmethacrylate-co-divinylbenzene) was demonstrated. The magnetic microspheres, consisting of polymer-coated iron oxide nanoparticles, were synthesized by the modified suspension polymerization of methacrylate and divinylbenzene in the presence of a magnetic fluid. The morphology and the properties of the magnetic porous microspheres were examined by scanning electron microscopy, transmission electron microscopy, superconducting quantum interference device, Fourier transform infrared spectroscopy, thermogravimetry, and X-ray powder diffraction. The pore size distribution and the specific surface area of the microspheres were measured by nitrogen sorption and mercury porosimetry technique. As predicted from the previous knowledge, the magnetic porous microspheres possessed a high specific surface area using n-hexane as a porogen. It was further found that the amounts of divinylbenzene and methacrylate, the ratio of porogens, and the dosage of ferrofluids affect the specific surface area of the microspheres. Furthermore, the microspheres were applied to remove phenol from aqueous solutions. The results showed that the microspheres had a high adsorption capacity for phenol and a high separation efficiency due to their porous structure, polar groups, and superparamagnetic characteristic.  相似文献   

4.
Silica/polypyrrole (PPY) core/shell microspheres and PPY hollow microspheres were prepared by the template of silica particles whose surface character was modified with different modified agents. The morphology and structure of the particles were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Elemental analysis and X-ray photoelectron spectroscopy (XPS) were carried out to characterize the structure of PPY hollow microspheres. We investigated the effect of different modified agents on the surface character of silica particles and the effect of surface character of silica particles on the morphology of PPY hollow microspheres. The effect of reaction conditions on the size of core/shell particles and hollow particles was also studied.  相似文献   

5.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

6.
A novel tri‐component copolymer, polycaprolactone/poly(ethylene oxide)/polylactide (PCEL) was synthesized. The effect of the chemical composition on physical properties was investigated by using NMR, differential scanning calorimetry (DSC) and X‐ray diffraction. Both the soft segment poly(ethylene oxide) (PEO) and polycaprolactone (PCL) could enhance the mobility of polymer chains and decrease the crystallizability of the copolymers. The polymeric microspheres, which are of interest for drug delivery systems, were prepared using an emulsification‐solvent evaporation technique. By scanning electron microscopy (SEM) and atomic force microscopy (AFM), the surface morphology of the microspheres was studied. It was found that the presence of PEO segment could improve the hydrophilicity of the copolymers and the morphology of the polymeric microspheres could be altered by adjusting the chemical composition. The accumulation of PEO segments on the outer surface of the polymeric microspheres was proven by X‐ray photoelectron spectroscopy (XPS). It had also been proven that the PCL segment could facilitate the movement of PEO segment to the outer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Carbohydrate microspheres coated with magnetic nanoparticles were prepared by hydrothermal synthesis where a species of carbohydrate, such as vitamin C, glucose, and soluble starch, were used to obtain microsphere templates as the core of the composite microspheres. The dimension of the carbohydrate microspheres could be well controlled by adjusting the concentration of the starting material, the temperature, and the reaction time. The morphology of the magnetic composite microspheres was characterized by field‐emission scanning electron microscopy (FE‐SEM). The composition, as well as the structure of the composite microspheres, was confirmed by Fourier transform infrared spectroscopy (FTIR) and x‐ray diffraction (XRD).  相似文献   

8.
氧化铁磁性纳米粒子的表面配体交换及相转移   总被引:1,自引:1,他引:0  
以苯甲醇为单一溶剂, 通过常压、高温热解乙酰丙酮铁, 制备了尺寸单分散的四氧化三铁磁性纳米粒子. 采用透射电镜(TEM), X射线衍射(XRD), 动态光散射(DLS)等方法对粒子形貌和结构进行了表征. 利用傅里叶变换红外(FT-IR)光谱和热重分析(TGA)研究了所制备纳米粒子的表面化学, 结果表明稳定四氧化三铁粒子的是苯甲酸分子, 且表面覆盖度小于20%. 所制备的磁性纳米粒子可以在室温下方便地进行表面配体交换, 从而为氧化铁磁性纳米粒子的功能化提供新的途径.  相似文献   

9.
The fabrication of novel iron-doped barium strontium titanate thin films by means of radio frequency (RF) magnetron co-sputtering is shown. Investigations of the elemental composition and the dopant distribution in the thin films obtained by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and time-of-flight secondary ion mass spectroscopy reveal a homogeneous dopant concentration throughout the thin film. The incorporation of the iron dopant and the temperature-dependent evolution of the crystal structure and morphology are analyzed by electron paramagnetic resonance spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and scanning electron microscopy. In summary, these results emphasize the RF magnetron co-sputter process as a versatile way to fabricate doped thin films.  相似文献   

10.
We have successfully prepared biocompatible and biodegradable hollow microspheres using carboxyl‐functionalized polystyrene particles as core template and the chitosan cross‐linked with glutaraldehyde as the shell. The monodisperse carboxyl‐functionalized polystyrene particles were made by emulsifier‐free emulsion polymerization. The structure, morphology, and constitution of the carboxyl‐functionalized polystyrene particles were characterized by FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The structure, morphology, and formation process of the hollow cross‐linked chitosan microspheres were characterized by FTIR, SEM, and TEM. The results revealed that the latex particles were removed by exposed to solvent and the microspheres exhibited the hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross‐linking on the surface of the carboxyl‐functionalized polystyrene particles and then removing off the cores of particles. Moreover, with the increase of carboxyl‐functionalization degree at the surface of latexes and the increase of cross‐linking period, the thicker and firmer monodisperse hollow microspheres were obtained. In addition, a water‐soluble drug, salicylic acid, encapsulated in the microcapsules slowly released at pH 1.2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 228–237, 2008  相似文献   

11.
Freely suspended nanocomposite thin films based on soft polymers and functional nanostructures have been widely investigated for their potential application as active elements in microdevices. However, most studies are focused on the preparation of nanofilms composed of polyelectrolytes and charged colloidal particles. Here, a new technique for the preparation of poly(l-lactic acid) free-standing nanofilms embeddidng superparamagnetic iron oxide nanoparticles is presented. The fabrication process, based on a spin-coating deposition approach, is described, and the influence of each production parameter on the morphology and magnetic properties of the final structure is investigated. Superparamagnetic free-standing nanofilms were obtained, as evidenced by a magnetization hysteresis measurement performed with a superconducting quantum interference device (SQUID). Nanofilm surface morphology and thickness were evaluated by atomic force microscopy (AFM), and the nanoparticle dispersion inside the composites was investigated by transmission electron microscopy (TEM). These nanofilms, composed of a biodegradable polyester and remotely controllable by external magnetic fields, are promising candidates for many potential applications in the biomedical field.  相似文献   

12.
孙爱娟  高礼 《化学研究》2011,22(1):61-65
采用改进的悬浮聚合法合成了一系列粒径和结构可调的羰基铁粉/聚苯乙烯磁性高分子微球.利用傅立叶变换红外光谱仪、热重分析仪、X射线衍射仪、扫描电镜等分析了微球的结构、化学成分及形貌.结果表明,通过改变苯乙烯单体和聚乙烯醇(PVA)的加入量,可以制备三类不同形貌和结构的复合微球,即多孔复合微球,无孔复合微球和含"带状"突起的...  相似文献   

13.
A novel kind of cyanate ester (CE)/epoxy resin microspheres have been synthesized using the polymerization technology of cyanate ester and epoxy resin in anhydrous ethanol media; surfactant sodium dodecylbenzene sulfonate was used as an emulsifier, and imidazole was used as catalyst or curing agent. The morphologies, chemical structures, and thermal properties of microspheres were investigated by Fourier transform infrared spectroscopy, scanning electron microscope, laser scanning confocal fluorescence microscopy, optical microscope, differential scanning calorimeter, and thermogravimetric analyzer, respectively. The effects of process parameters such as the amount of imidazole and the weight ratio of epoxy resin to CE on the size and morphology of microsphere were discussed. Results indicate that the reactivity and surface morphology of microsphere can be adjusted by the amount of imidazole and the weight ratio of epoxy resin to CE. The prepared microsphere shows excellent thermal stability and good reactivity.  相似文献   

14.
Tin oxide-doped hybrid particles were prepared by a wet chemical process with organic-inorganic (phenyl/silica) hybrid particles in an alcoholic solution. The phenyl/silica hybrid particles, with a diameter of ca. 790 nm were used as a new support material for tin oxide (SnO2) particles from tin(IV) chloride. The surface of the particles was modified via nitration of aromatic groups in the particles, to promote formation of the tin oxide coating on the particles. The thickness and surface morphology of the tin oxide layer coated on the nitrated-phenyl/silica hybrid particles could be controlled by varying the tin(IV) chloride concentration and reaction time. The size and morphology of the resultant particles were investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The particles obtained were also characterised by infrared (FTIR) and solid-state 13C magic angle spinning nuclear magnetic resonance (13C-CP/MAS NMR) spectroscopy. The effect of processing parameters on the crystallinity and structure of the doped hybrids were confirmed by X-ray diffraction (XRD) patterns.  相似文献   

15.
The transport of particles through groundwater systems is governed by a complex interplay of mechanical and chemical forces that are ultimately responsible for binding to geological substrates. To understand these forces in the context of zero valent iron particles used in the remediation of groundwater, atomic force microscopy (AFM)-based force spectroscopy was employed to characterize the interactions between AFM tips modified with either carbonyl iron particles (CIP) or electrodeposited Fe as a function of counterion valency, temperature, particle morphology, and age. The measured interaction forces were always attractive for both fresh and aged CIP and electrodeposited iron, except in 100 mM NaCl, as a consequence of electrostatic attraction between the negatively charged mica and positively charged iron. In 100 mM NaCl, repulsive hydration forces appeared to dominate. Good agreement was found between the experimental data and predictions based on the extended DLVO (XDLVO) theory. The effect of aging on iron particle composition and morphology was assessed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) revealing that the aged particles comprising a zero valent iron core passivated by a mixture of iron oxides and hydroxides. Force spectroscopy showed that aging caused variations in the adhesive force due to the changes in particle morphology and contact area.  相似文献   

16.
以表面修饰乙烯基团的SiO2微球为基体,白藜芦醇为模板分子,丙烯酰胺(AA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用表面印迹技术制备核-壳型白藜芦醇印迹微球。采用红外光谱(IR)、扫描电子显微镜(SEM)对该分子印迹微球进行表征,结果表明,SiO2表面成功接枝一层厚度为200nm的印迹聚合物,该印迹微球颗粒分散均匀。采用高效液相色谱技术对印迹微球的吸附性进行研究表明,此印迹微球具有良好的识别性能,利用Scatchard模型分析得出印迹微球的最大吸附量分别为Qmax1=9.087mg/g和Qmax2=13.80mg/g。此印迹微球成功用于分离虎杖提取液中白藜芦醇。  相似文献   

17.
Study of Ultrafine Iron Powders by Atomic Force Microscopy   总被引:1,自引:0,他引:1  
The particles of ultrafine iron powders obtained by three different methods (electrolytic deposition, reduction in hydrogen flow, and grinding in a planetary ball mill in heptane medium) were studied by the atomic force microscopy and the results were compared with the data of electron microscopy and X-ray diffraction analysis. The shape and size of particles were determined from three-dimensional images obtained by atomic force microscopy, and the grain structure of the particle surface layer was studied by measuring the lateral friction forces.  相似文献   

18.
Monodisperse polystyrene microspheres with diameters of 200–500 nm were prepared by dispersion polymerization with microwave irradiation with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator in an ethanol/water medium. The morphology, size, and size distribution of the polystyrene microspheres were characterized with transmission electron microscopy and photon correlation spectroscopy, and the formed films of the polystyrene dispersions were characterized with atomic force microscopy. The effects of the monomer concentration, stabilizer concentration, and initiator concentration on the size and size distribution of the polystyrene microspheres were investigated. The polystyrene microspheres prepared by dispersion polymerization with microwave irradiation were smaller, more uniform, and steadier than those obtained with conventional heating. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2368‐2376, 2005  相似文献   

19.
以苯乙烯为单体、 偶氮二异丁腈(AIBN)为引发剂、 片状纳米氢氧化镁(MH)为Pickering稳定剂, 采用悬浮聚合法制备盔甲结构的聚苯烯@氢氧化镁(PS@MH)复合微球. 采用扫描电子显微镜(SEM)、 能谱分析(EDS)、 傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)、 热失重分析(TGA)和微型燃烧量热分析(MCC)等对PS@MH复合微球进行表征, 确认了其形貌和结构: 纳米氢氧化镁紧密包覆在聚苯乙烯微球表面, 形成了以纳米氢氧化镁为外层、 聚苯乙烯为内球的盔甲结构复合微球; 同时证明了具有盔甲结构的PS@MH复合微球能降低热释放速率, 抑制聚合物的降解. 该方法操作简单, 成本低廉, 制得的盔甲结构PS@MH复合微球粒径尺寸小、 分布窄, 球形度较高.  相似文献   

20.
以原位化学沉淀的方法制备了不同粒径、包覆结构PS(核)/CeO2(壳)复合微球,利用X射线衍射仪、透射电子显微镜、选区电子衍射、场发射扫描电子显微镜、能谱分析仪、Fourier转换红外光谱仪、热失重分析仪和ζ电位测定仪等手段对所制备样品的微观结构进行了表征。将所制备的复合微球用做磨料,考察其对二氧化硅介质层的抛光性能,用原子力显微镜观察和测量抛光表面的微观形貌、轮廓曲线和粗糙度。结果表明,所制备的PS/CeO2复合微球具有核壳包覆结构,粒径分别约为140,180和220 nm,PS内核被粒径约为5 nm的CeO2颗粒均匀包覆。AFM结果显示,复合磨料的粒径越小,抛光后表面粗糙度越低;且酸性(pH=3)比碱性(pH=10)抛光浆料具有更好的抛光效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号