首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
This paper addresses the use of different slotted pores in rotating membrane emulsification technology. Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation. Increasing the membrane rotation speed decreased the droplet size, and the oil droplets produced were more uniform using slotted pores as compared to circular geometry. At a given rotation speed, the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity). The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity. At a given pore fluid velocity and rotation speed, pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores. This work indicates practical benefits in the use of slotted membranes over conventional methods.  相似文献   

2.
In order to improve the dispersibility and loading efficiency of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS), HNS microspheres were prepared by rapid membrane emulsification method with nitrocellulose (NC) as binder. The effects of NC solution concentration, stirring speed and polyvinyl alcohol (PVA) solution concentration on microspheres were investigated. It was characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), differential thermal analysis (DTA) and angle of repose analyzer. The results show that the HNS microspheres prepared with 5 wt% NC solution concentration, stirring speed of 100 rpm and 2 wt% PVA solution concentration have better regular morphology, higher sphericity, unchanged crystalline shape, increased activation energy and significantly improved dispersibility compared with the refined HNS. Rapid membrane emulsification has a series of advantages such as green, low cost and easy scale up, which provides a better way to prepare microspheres of energy materials.  相似文献   

3.
Magnetic polymer particles have found applications in diverse areas such as biomedical treatments, diagnosis and separation technology. These applications require the particles to have controlled sizes and narrow size distributions to gain better control and reproducibility in use. This paper reviews recent developments in the preparation of magnetic polymer particles at nano- and micro-scales by encapsulating magnetic components with dissolved or in situ formed polymers. Particle manufacture using emulsification and embedment methods produces magnetic polymer particles at micro-scale dimensions. However, the production of particles in this range using conventional emulsification methods affords very limited control over particle sizes and polydispersity. We report on alternative routes using membrane and microfluidics emulsification techniques, which have a capability to produce monodisperse emulsions and polymer microspheres (with coefficients of variation of less than 10%) in the range from submicrometer to a few 100 μm. The performance of these manufacturing methods is assessed with a view to future applications.  相似文献   

4.
Transmembrane water pores are crucial for sub-stance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the pro-cess of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diame-ter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Fol-lowing the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.  相似文献   

5.
2D DEM simulation of particle mixing in rotating drum:A parametric study   总被引:2,自引:0,他引:2  
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simulations and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be rea...  相似文献   

6.
This review focuses on recent developments in the fabrication of multiple emulsions in micro-scale systems such as membranes, microchannel array, and microfluidic emulsification devices. Membrane and microchannel emulsification offer great potential to manufacture multiple emulsions with uniform drop sizes and high encapsulation efficiency of encapsulated active materials. Meanwhile, microfluidic devices enable an unprecedented level of control over the number, size, and type of internal droplets at each hierarchical level but suffer from low production scale. Microfluidic methods can be used to generate high-order multiple emulsions (triple, quadruple, and quintuple), non-spherical (discoidal and rod-like) drops, and asymmetric drops such as Janus and ternary drops with two or three distinct surface regions. Multiple emulsion droplets generated in microfabricated devices can be used as templates for vesicles like polymersomes, liposomes, and colloidosomes with multiple inner compartments for simultaneous encapsulation and release of incompatible active materials or reactants.  相似文献   

7.
Numerical solutions are often inaccurate because conventional co-ordinate systems do not represent the complex physical boundaries accurately. In the present work, the numerical solution of linear shallow water wave equations has been obtained by transforming the physical domain into a rectangular computational domain using elliptic differential operators. This work is part of a programme to develop three-dimensional body-fit grid systems for environmental flows. Solutions have been obtained for a cylindrical container and also a parabolic container. The initial conditions chosen are the ones for which analytical solutions exist. The numerical solutions compare well with analytical solutions.  相似文献   

8.
An X-ray particle tracking velocimetry (PTV) technique was developed to simultaneously measure the sizes and velocities of microbubbles in a fluid without optical aberration. This technique is based on a combination of in-line X-ray holography and PTV. The X-ray PTV technique uses a configuration similar to that of conventional optical imaging techniques, and is easy to implement. In the present work, microbubbles generated from a fine wire by electrical heating were used as tracer particles. The X-ray PTV technique simultaneously recorded size and velocity data for microbubbles (b=10–60 m) moving upward in an opaque tube (inner diameter =2.7 mm). Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of overlapped microbubbles. In all of the working fluids tested (deionised water and 0.01 M and 0.10 M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The proposed technique can be used to extract useful information on the behaviour of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.  相似文献   

9.
The unsteady aerodynamic thrust and aeroelastic response of a two-dimensional membrane airfoil under prescribed harmonic motion are investigated computationally with a high-order Navier–Stokes solver coupled to a nonlinear membrane structural model. The effects of membrane prestress and elasticity are examined parametrically for selected plunge and pitch–plunge motions at a chord-based Reynolds number of 2500. The importance of inertial membrane loads resulting from the prescribed flapping is also assessed for pure plunging motions. This study compares the period-averaged aerodynamic loads of flexible versus rigid membrane airfoils and highlights the vortex structures and salient fluid–membrane interactions that enable more efficient flapping thrust production in low Reynolds number flows.  相似文献   

10.
This paper analyzes a transient, nonlinear deep drawing process where a circular blank of a rigid-plastic material is forced by a rigid circular punch to deform into a cylindrical cup. Attention is focused on the plastic flow beneath the blank-holder. Using the Cosserat theory of a generalized membrane it is possible to obtain analytical solutions which examine the following two major effects: (a) the importance of added “rim pressure” acting on the outer edge of the blank; and (b) the importance of a controlled moveable blank-holder to allow blank thickening during the drawing process. Guided by these analytical results, a new deep drawing machine was built to exploit these effects and increase the limit drawing ratio (LDR) of the drawing process. Specifically, the LDR (in one stroke) reached the value of 3.16 compared with the value of about 2.0 in the conventional process. Moreover, the analytical prediction of the punch force versus the punch stroke is in good agreement with the experimental data and with simulations using the computer code DYTRAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号