首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When a turbulent gas flow and a hollow electrode are combined in a discharge chamber, a synergetic effect is observed: the weight of the deposit decreases by five to six times and fullerene-containing soot dissolves completely (without precipitation) in benzene. The mass spectra of the synthesis products contain the lines of C60, C70, and C74 + 2n (n = 0–40) fullerenes. This indicates a 100% yield of the fullerene mixture. As a result, the output of the fullerene synthesis process increases by a factor of more than 10.  相似文献   

2.
The structure of a new class of boron nanostructures—barrelenes and tubulenes—based on a boron atomic lattice constructed by the alternating B-atomic polygons with central atoms and without them has been proposed and their properties have been described. Ab initio density functional calculations have been performed for the energy and electronic structure of the fullerene-barrelene-nanotube series based on the lowest energy fullerene B80. It has been shown that the energy and band gap of a barrelene are lower than the respective quantities of the corresponding fullerene and tend to the respective values for nanotubes in the infinite limit. It has been shown that there are isomers of nanotubes of the same type that are significantly different in symmetry and electronic properties: a semiconductor (C 5v symmetry) and a metal (D 5h symmetry).  相似文献   

3.
New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen (h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN (n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96–13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10–21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (–80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.  相似文献   

4.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

5.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

6.
It is demonstrated that in fullerene C70, which can be considered as a deformed fullerene C60 in some mean sense there is a withdrawal of an Electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which is realized in the fullerene C60. This situation occurs because of the reduction of symmetry of C60 from the icosahedral symmetry group Yh to the group D5h. The withdrawal results in appearance of the lines in the SERS spectra of C60, which are forbidden in usual Raman scattering and are active in the infrared absorption spectra. The experimentally measured SERS spectra of C70 demonstrates existence of such lines that strongly confirms our ideas about the dipole-quadrupole SERS mechanism.  相似文献   

7.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

8.
A. I. Gusev 《JETP Letters》2004,79(4):148-154
A symmetry analysis of ordering in lithium nickelite Li1?x?zNi1+xO2 (Li1?x?zyNi1+xO2) was performed with regard to the substitution of Li and Ni atoms and the occurrence of structural vacancies □ in the metal sublattice. For all the ordered phases, the k 9 (3) ray of the Lifshitz {k9} star is present in the order-disorder transition channel. This ray determines the consecutive alternation of atomic planes filled with only Ni atoms or only Li atoms and vacancies in the \([1\bar 11]_{B1} \) direction. It was shown that the rhombohedral ordered LiNiO2 phase is formed in the defect-free lithium nickelite, whereas a family of three monoclinic Li3□Ni4O8 (C2/m space group) and Li2□Ni3O6 (C2/m and C2 space groups) superstructures arises as the concentration of structural vacancies increases. For all the superstructures, the order-disorder phase-transition channels were determined and the distribution functions of Li and Ni atoms have been calculated. The long-range order parameters describing each superstructure were found as functions of the Li1?x? zNi1+xO2 composition.  相似文献   

9.
10.
The reaction of C60, under ultrasonication, with various oxidants, such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and the oxone® monopersulfate compound, causes the oxidation of fullerenes at room temperature. The FAB-MS spectra and HPLC profile confirmed that the products of fullerene oxidation were [C60(O)n] (n=1~3 or n=1). C70 also reacted, under ultrasonication, with various oxidants, but the reaction rate of C70 was lower than that of C60.  相似文献   

11.
A consistent procedure for determining the ionization potential of a large metal cluster of radius R N, v , consisting of N atoms and N v vacancies, is proposed. The perturbation theory in small parameters R v /R N, v and L v /R v (Rv and L v are average distance between vacancies and the length of electron scattering on vacancies, respectively) is constructed in the effective-medium approximation for the electron ground state energy. The effective vacancy potential profile, the electron scattering phase and length are calculated by the Kohn–Sham method for a macroscopic metal in the stable jelly model. The obtained analytical dependences can be useful to analyze the results of photoionization experiments and to determine the size dependence of the vacancy concentration, including that near the melting temperature.  相似文献   

12.
Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer–solvent interactions ε ij (i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ε AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ε BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ε AS2.  相似文献   

13.
The polarizability α of many atoms and positive ions is related to their energy gap Δ and valence m by the expression αΔ2 ? m (in atomic units). The parameter Δ corresponds to a dipolar transition from the ground state to the first excited P state without a change in the principal quantum number n. This relation holds for univalent (m = 1) Na, K, Rb, Cs, Fr and bivalent (m = 2) Mg, Ca, Zn, Sr, Cd, Ba, Yb, Hg atoms. The above relation agrees with the experiment for positive ions Mg+ and Ca+ (m = 1) and Al+ and Ga+ (m = 2). The polarizability has been found for atoms and ions of the type Zn+, In+, Tl+, for which experimental data are unavailable. A method of calculating α for ions of the types C++, Al++, Si++ and Si+++, P+++, As+++ has been suggested based on the approximate relation α ?(2/3〈r20)2/m with the parameter 〈r20 expressed in terms of the valence m, the charge number q of the atomic or ionic residue, and the ionization potential \({J_q} = \frac{{{q^2}}}{{2v_s^2}}\) as \({\left\langle {{r^2}} \right\rangle _0} = \frac{m}{{2{q^2}}}\nu _s^2\left( {1 + 5\nu _s^2} \right)\). The hydrogen dependence of 〈r20 on the parameter νs has been derived by analytical continuation from the integer values νs = 1 and 2. A variational estimate of the van der Waals constant characterizing the interaction of two spherically symmetric atoms at large distances has been given.  相似文献   

14.
The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X (X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 ? y N y → TiO2 ? y C y → TiO2 ? y B y (y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.  相似文献   

15.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

16.
The electronic band structures of boron nitride crystal modifications of the graphite (h-BN), wurtzite (w-BN), and sphalerite (c-BN) types are calculated using the local coherent potential method in the cluster muffin-tin approximation within the framework of the multiple scattering theory. The specific features of the electronic band structure of 2H, 4H, and 3C boron nitride polytypes are compared with those of experimental x-ray photoelectron, x-ray emission, and K x-ray absorption spectra of boron and nitrogen. The features of the experimental x-ray spectra of boron nitride in different crystal modifications are interpreted. It is demonstrated that the short-wavelength peak revealed in the total densities of states (TDOS) in the boron nitride polytypes under consideration can be assigned to the so-called outer collective band formed by 2p electrons of boron and nitrogen atoms. The inference is made that the decrease observed in the band gap when changing over from wurtzite and sphalerite to hexagonal boron nitride is associated with the change in the coordination number of the components, which, in turn, leads to a change in the energy location of the conduction band bottom in the crystal.  相似文献   

17.
The structural, electronic, and magnetic properties and the enthalpy of formation of iron borocementites Fe3C1?x Bx (x= 0, 0.25, 0.50, 0.75, 1.00) are analyzed using ab initio calculations in the framework of the electron density functional theory. It is found that the unit cell parameter a of the orthorhombic lattice increases linearly and the parameters b and c decrease as the boron concentration increases. The density of states at the Fermi level changes only slightly, and the main variations in the band structure occur in the region of the bottom of the valence bands. The magnetic moment of the iron atoms and the total magnetization and stability of the Fe3C1?x Bx phases increase linearly with an increase in the boron concentration.  相似文献   

18.
The singlet-singlet and triplet-triplet absorption spectra of C60 fullerene are calculated using the density functional method and taking into account the theory of linear and quadratic responses. The B3LYP density functional and the 6–31G and 3–21G atomic basis sets are used. The calculations are performed using the D2h and D5d symmetry groups, although the real symmetry of the ground state is described by the I h symmetry group. The matrix elements of the operator of the spin-orbit coupling are calculated and the probabilities of some singlet-triplet transitions are estimated. Taking into account the data in the literature on vibronic interactions of vibrations of the t1u, t2u, g u , and h u symmetry species, the radiative lifetime of the 13T2g → 11A g phosphorescence was estimated to be 45 s. The fact that this time proved to be considerably greater than the experimentally observed total lifetime of the triplet testifies to a fast nonradiative deactivation of the lowest triplet state of C60 fullerene and agrees with a low phosphorescence intensity. The zero-field splitting of some triplets and the intensities of magnetic dipole transitions are discussed.  相似文献   

19.
A new class of quasi-linear carbon molecules [C60] n [C m ]n?1 consisting of n fullerenes C60 linked by n?1 carbyne-type C m fragments with a system of conjugated bonds is described. The possible geometric configurations of such molecules and crystals on their base are discussed. The structure optimization by the empirical (MM+), semiempirical (PM3), and ab initio (HF/6-21) methods showed that these molecules are energetically stable.  相似文献   

20.
Natural thermal entanglement between atoms of a linear arranged four coupled cavities system is studied. The results show that there is no thermal pairwise entanglement between atoms if atom-field interaction strength f or fiber-cavity coupling constant J equals to zero, both f and J can induce thermal pairwise entanglement in a certain range. Numerical simulations show that the nearest neighbor concurrence CAB is always greater than alternate concurrence CAC in the same condition. In addition, the effect of temperature T on the entanglement of alternate qubits is much stronger than the nearest neighbor qubits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号