首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
成建国  刘开颖  白敏冬  程超  余忆玄  周新颖 《色谱》2015,33(12):1287-1293
2-甲基异莰醇(2-methylisoborneol, 2-MIB)和土臭素(geosmin, GSM)在水源水中大量分泌排放是造成饮用水土霉异味突发事件、引发居民用水恐慌的重用因素之一。使用顶空固相微萃取(HS-SPME)与气相色谱-质谱联用技术(GC-MS)建立了水库水、水库附近土壤、居民自来水中2-MIB和GSM的测定方法。结合正交分析优化了加盐量、萃取温度、萃取时间条件,在电子轰击(EI)-选择离子扫描(SIM)模式下进行了目标物的定性定量分析。结果表明:在5~1000 ng/L范围内,2-MIB和GSM的色谱峰面积与其质量浓度的线性关系良好(r2≥0.998), 2-MIB与GSM的检出限分别为0.72 ng/L和0.34 ng/L,定量限分别为2.40 ng/L和1.13 ng/L;目标物加标水平为10~600 ng/L时,平均回收率为93.6%~107.7%,相对标准偏差(RSD)≤6.1%(n=6)。基于上述方法,对辽宁省某地区水库水、水库附近土壤、居民自来水中的目标物进行检测,结果表明:水库水目标物质量浓度范围为3.0~3.6 ng/L,水库附近土壤中提取的2-MIB为8.1 ng/L、提取的GSM为17.8 ng/L,居民自来水中的目标物未检出。该方法操作简便、准确可靠,灵敏度高,无需有机溶剂,适合于饮用水中2-MIB和GSM的分析检测。  相似文献   

2.
Six samples of propolis were analyzed in the paper: a sample from Brazil, Estonia, China and three samples from different locations of Uruguay. Static headspace technique coupled with gas chromatography-mass spectrometry analysis has been applied for the determination of the characteristic volatile profile with the aim to differentiate the propolis from different regions. Monoterpenes (α- and β-pinenes) were predominant in all samples, except the sample from China. This sample separated itself by the alcohols 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol, (40.33% and 11.57%, respectively) and ester 4-penten-1-yl acetate (9.04%). α-Pinene and β-pinene composed 64.59–77.56% of volatiles in Brazilian and Uruguayan propolis, and 29.43% in Estonian propolis. Brazilian propolis was distinguished by a high amount of β-methyl crotonaldehyde (10.11%), one of Uruguayan samples 3- by limonene (15.58%), and the Estonian sample — by eucalyptol (25.95%). Statistical investigation of the samples was made applying principal component, hierarchical cluster and K-Means cluster analyses. Various data pre-processing techniques were proposed and used to study and obtain the important volatile compounds contributed to the differentiation of the propolis samples from different regions to separate clusters.   相似文献   

3.
A simple, efficient, solvent‐free, and commercial readily available approach for determination of five volatile chlorinated hydrocarbons in water samples using the static headspace sampling and gas chromatography with electron capture detection has been described. The proposed static headspace sampling method was initially optimized and the optimum experimental conditions found were 10 mL water sample containing 20% w/v sodium chloride placed in a 20 mL vial and stirred at 50ºC for 20 min. The linearity of the method was in the range of 1.2–240 μg/L for dichloromethane, 0.2–40 μg/L for trichloromethane, 0.005–1 μg/L for perchloromethane, 0.025–5 μg/L for trichloroethylene, and 0.01–2 μg/L for perchloroethylene, with coefficients of determination ranging between 0.9979 and 0.9990. The limits of detection were in the low μg/L level, ranging between 0.001 and 0.3 μg/L. The relative recoveries of spiked five volatile chlorinated hydrocarbons with external calibration method at different concentration levels in pure, tap, sea water of Jiaojiang Estuary, and sea water of waters of Xiaomendao were in the range of 91–116, 96–105, 86–112, and 80–111%, respectively, and with relative standard deviations of 1.9–3.6, 2.3–3.5, 1.5–2.7, and 2.3–3.7% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid–liquid extraction on the real water samples (i.e., pure, tap, and sea water, etc.) and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of volatile chlorinated hydrocarbons in different water samples.  相似文献   

4.
Static headspace GC, a simple, clean technique which is easily automated, appears to be a good approach to the determination of solvent residues in pharmaceutical preparations. The feasibility of this approach has been studied with an automated system. Data is presented for the solvents designated as impurities in pharmaceutical preparations by the United States Pharmacopeia. It was found that the static headspace technique meets the United States Pharmacopeia criteria for sensitivity. The absolute area count precision was <5% relative standard deviation and correlation coefficients to a linear response were >0.999. It was concluded that the technique is viable for this application.  相似文献   

5.
Kaykhaii M  Nazari S  Chamsaz M 《Talanta》2005,65(1):223-228
The possibility of applying headspace microextraction into a single drop for the determination of amines in aqueous solutions is demonstrated. A 1 μl drop of benzyl alcohol containing 2-butanone as an internal standard was suspended from the tip of a micro syringe needle over the headspace of stirred sample solutions for extraction. The drop was then injected directly into a GC. The total chromatographic determination was less than 10 min. Optimization of experimental conditions (sampling time, sampling temperature, stirring rate, ionic strength of the solution, concentration of reagents, time of extraction and organic drop volume) with respect to the extraction efficiency were investigated and the linear range and the precision were also examined. Calibration curves yielded good linearity and concentrations down to 2.5 ng ml−1 were detectable with R.S.D. values ranging from 6.0 to 12.0%. Finally, the method was successfully applied to the extraction and determination of amines in tap and river water samples. This system represents an inexpensive, fast, simple and precise sample cleanup and preconcentration method for the determination of volatile organic compounds at trace levels.  相似文献   

6.
The most suitable way of determination iodine-deficiency is to measure iodine concentrations in water and urine. For this reason, a method that can determine iodide concentrations in drinking water and suitable for routine analysis, is developed. Water samples have been collected from four Aegean localities: Izmir, Salihli, Ödemis and Tire situated in the western Turkey. The method is based on substochiometric isotope dilution analysis. Iodile concentrations vary within 9.86–85.14 μg/l ranges in the analyzed samples. Mean value is 44.92±22.07 μg/l.  相似文献   

7.
The possibility of direct gas-chromatographic analysis of dimethylcadmium was demonstrated. A procedure for determining impurities of diethyl ether and methyl iodide using headspace analysis was developed. The limits of detection for diethyl ether and methyl iodide were 3 x 10-4 and 2 x 10-3 mol %, respectively.  相似文献   

8.
Dills RL  Kent SD  Checkoway H  Kalman DA 《Talanta》1991,38(4):365-374
A static headspace method for determination of volatile solvents in blood was developed. The solvents determined were 1,1,1-trichloroethane, toluene, xylene (o-, m- and p-), ethylbenzene, styrene, alpha-methylstyrene and 4-methylstyrene at concentrations ranging from 0.01 to 1 mug/ml. Internal standard calibration was used. Parameters affecting sensitivity and precision were determined and optimized.  相似文献   

9.
This work was concerned with developing an electrophoretic method for rapid determination of nitrites and nitrates in drinking water. The background electrolyte was Tris-HCl buffer with an addition of cetyltrimethylammonium chloride to reverse the electro-osmotic flow. Online preconcentration of samples using the field-amplified sample stacking method provided detection limits of 0.003 mg L?1 (i.e. 65 nM) for nitrites and 0.010 mg L?1 (i.e. 160 nM) for nitrates, which are sufficiently low for quality control of drinking water. The method was tested in a concentration range corresponding to real drinking water samples and the differentiation between nitrites and nitrates was sufficient for simultaneous determination of nitrites at their concentrations of the order of tenths of mg L?1 and nitrates at their concentrations of the order of units to tens of mg L?1. A number of authors have neglected this important aspect when concentrating only on achieving the lowest possible detection limits. Separation of the two analytes and iodate as an internal standard was achieved in only three minutes. Total analysis time including preconditioning was eight minutes.  相似文献   

10.
Four cyanobacteria hepatotoxins microcystin LR, microcystin RR, microcystin YR, and nodularin were simultaneously determined in drinking water using CZE and MEKC coupled with UV detection. The toxins were satisfactorily separated in both CZE and MEKC modes. Detection limits were in the range of 0.82–4.81 μg/mL, with R2 values of 0.994–0.999. The linearity range tested for the standards was 5–100 μg/mL and RSD percentages were in the range of 1.0–2.5% for retention time and 3.0–10.2% for peak area. When a known amount of standard was spiked into a known volume of water and extracted, recoveries were 90.3% (RR), 101.5% (nodularin), 90.6% (YR), and 88.2% (LR). The use of SPE enabled cleanup and pre‐concentration of a real sample to achieve a 100‐fold concentration factor. Detection limits after SPE of the real sample spiked with microcystins were 0.090 μg/L (RR), 0.076 μg/L (YR), and 0.110 μg/L (LR), with RSD percentage values of 9.9–11.7% for peak area and 2.2–3.3% for retention time. The technique developed provides an alternative method for determining microcystins at levels of concentration that will be able to meet WHO drinking water guidelines for microcystins.  相似文献   

11.
A membrane inlet mass spectrometric (MIMS) method is presented and compared with a static headspace gas chromatographic method (HSGC) for the determination of terpenes in water. The MIMS method provides a very simple and fast analysis of terpenes in water, detection limits being relatively low, from 0.2 mug l(-1) for monoterpenes to 2 mug l(-1) for geraniol. The analysis of terpenes by the HSGC (equipped with flame ionization detector, FID) method is more time-consuming and the detection limits (2 mug l(-1) for monoterpenes to 100 mug l(-1) for geraniol) are higher than with MIMS. However, the HSGC method has the advantage of determining individual mono- and sesquiterpene compounds, whereas MIMS provides only separation of different classes of terpenes. Both methods were applied to the analysis of mono- and sesquiterpenes in several condensation water samples of pulp and paper mills.  相似文献   

12.
王玉飞  施家威  王立  金米聪 《色谱》2015,33(4):441-445
建立了生活饮用水中痕量1,4-二氧六环的顶空固相微萃取(HS/SPME)-气相色谱测定方法。考察并优化了萃取头、萃取温度、萃取时间、pH值、样品量、色谱条件等参数。结果表明:提取效率较好的方法是3 mL水样中加入3 mL 600 g/L氢氧化钠溶液,用85 μm Carboxen-PDMS萃取头萃取,用键合碱改性的大口径、厚液膜PTA-5毛细管色谱柱测定。1,4-二氧六环在0.50~50.0 μg/L范围内线性关系良好,相关系数为0.9995;方法检出限(以S/N>3计)为0.14 μg/L;相对标准偏差为2.1%~4.5% (n=6);对实际样品中进行线性范围内的高、中、低3个加标水平的测定,回收率为95.5%~107%,相对标准偏差为1.1%~5.3% (n=6)。建立的方法简便、准确、重现性好、灵敏度高,适合生活饮用水中痕量1,4-二氧六环的常规监测。  相似文献   

13.
A simple, efficient, solvent‐free, and readily commercially available approach for the determination of eight benzene series compounds and 12 chlorobenzenes in water samples using the static headspace sampling and gas chromatography with flame ionization detection has been described in this paper. The proposed static headspace sampling method was initially optimized, and the optimum experimental conditions explored were 10 mL water sample containing 20% w/v sodium chloride placed in a 20 mL vial and stirred at 70°C for 43 min. The linearity of the method ranged from 1 to 200 μg/L for 20 analytes, with correlation coefficients ranging between 0.9962 and 0.9994. The limits of detection were in the μg/L level, ranging between 0.15 and 0.4 μg/L. The relative recoveries of spiked benzene series and chlorobenzenes with external calibration method at different concentration levels in pure, tap, and sea water samples were 84–113, 78–115 and 85–119%, respectively, with relative standard deviations of 3.8–6.8, 4.1–5.8, and 4.8–5.4% (n = 5), respectively. That this method can be successfully applied to the determination of benzene series compounds and chlorobenzenes in pure, tap, and sea water samples, simultaneously.  相似文献   

14.
Methyl tertiary-butyl ether (MTBE) is an organic compound which is used as a gasoline additive. Contamination of ground and surface water can occur due to large scale use of MTBE and its high solubility in water. According to United State Environmental Protection Agency (USEPA), MTBE is a possible human carcinogen at high doses and its detection and measurement in the water is important as concerned about human health. In this work, ion mobility spectrometry (IMS) equipped with a corona discharge ionization source was used for determination of MTBE in drinking water. Both pure and aqueous solutions of MTBE were studied and their ion mobility spectra were obtained at different temperatures. Using a calibration curve for detection of MTBE in drinking water, a detection limit (LOD) of 1 mg/L was obtained by IMS. This work proved that, IMS with corona discharge can be used for fast and direct detection of MTBE in water sample without any sample preparation.  相似文献   

15.
We describe a method for determination of cymoxanil, 1-2-cyano-2-methoxy(iminoacetyl)-3-ethylurea, in drinking water and in soil, using reversed-phase HPLC with UV detection at 240 nm and a mobile phase of acetonitrile-water (30:70, v/v). Fortified water samples (1.0 L) were extracted with solid-phase extraction on Strata X. Soil samples (20 g) were extracted with acetone and the extracts were transferred onto Strata C18E. The recoveries of cymoxanil from water and soil samples were over 85% for each fortification level. The RDS were within the range 1.7-4.1% for water and 0.9-1.2% for soil samples. After optimization of the extraction and separation conditions, the method was validated.  相似文献   

16.
A headspace solid-phase microextraction (HS-SPME) procedure followed by gas chromatography and electron capture detection (GC-ECD) has been developed for the determination of aldehydes in drinking water samples at microg/l concentrations. A previous derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was performed due to the high polarity and instability of these ozonation by-products. Several SPME coatings were tested and the divinylbenzene-polydimethylsiloxane (DVB-PDMS) coating in being the most suitable for the determination of these analytes. Experimental SPME parameters such as selection of coating, sample volume, addition of salt, extraction time and temperature of desorption were studied. Analytical parameters such as precision, linearity and detection limits were also determined. HS-SPME was compared to liquid-liquid microextraction (proposed in US Environmental Protection Agency Method 556) by analyzing spiked water samples; a good agreement between results obtained with both techniques was observed. Finally, aldehydes formed at the Barcelona water treatment plant (N.E. Spain) were determined at levels of 0.1-0.5 microg/l. As a conclusion, HS-SPME is a powerful tool for determining ozonation by-products in treated water.  相似文献   

17.
Epichlorohydrin (ECH) can enter drinking-water supplies due to leaching from epoxy resins in contact with water and/or through the use of flocculating water treatment agents. Potential human exposure from drinking waters poses a particular concern on account of toxicological studies showing severe acute and long-term toxic effects of ECH. Recently a parametric value of 0.1 μg/L for ECH in drinking water has been established by European Union.A few methods for ECH determination in water are available. However, they usually adopt cumbersome procedures for sample preparation and provide sensitivity not matching the EU criteria for water monitoring purposes.In this study we investigated the analytical performance of gas extraction techniques, such as static headspace (HS) and purge and trap (P&T), coupled to gas chromatography (GC) with an electron capture detector (GC-ECD) for the determination of ECH in drinking water. The influence of different parameters affecting the analytical response was studied in details in order to enhance the method sensitivity, thus fulfilling the regulatory requirements.The P&T GC-ECD method was proved capable of determining ECH in water for human consumption at a detection limit of 0.01 μg/L fully complying the regulatory levels. On the contrary, the HS GC-ECD method is far less sensitive (LOD≅40 μg/L) than the previous cited method. The P&T GC-ECD method is simple, rapid, automated, safe for operators and does not require large sample volumes. Therefore, it is useful for routine laboratory activities both for control and research actions.  相似文献   

18.
A coupled technique, microwave-assisted headspace solid-phase microextraction (MA-HS-SPME), was investigated for one-step in situ sample pretreatment for organochlorine pesticides (OCPs) prior to gas chromatographic determination. The OCPs, aldrin, o,p'-DDE, p,p'-DDE, o,p'-DDT, p,p'-DDT, dieldrin, alpha-endosulfan, beta-endosulfan, endosulfan sulfate, endrin, delta-HCH, gamma-HCH, heptachlor, heptachlor epoxide, methoxychlor and trifluralin were collected by the proposed method and analyzed by gas chromatography with electron-capture detection (GC-ECD). To perform the MA-HS-SPME, six types of SPME fibers were examined and compared. The parameters affecting the efficiency in MA-HS-SPME process such as sampling time and temperature, microwave irradiation power, desorption temperature and time were studied to obtain the optimal conditions. The method was developed using spiked water samples such as field water and with 0.05% humic acid in a concentration range of 0.05-2.5 microg/l except endosulfan sulfate in 0.25-2.5 microg/l. The detection was linear over the studied concentration range with r2>0.9978. The detection limits varied from 0.002 to 0.070 microg/l based on S/N=3 and the relative standard deviations for repeatability were <15%. A certified reference sample of OCPs in aqueous solution was analyzed by the proposed method and compared with the conventional liquid-liquid extraction procedure. These results are in good agreement. The results indicate that the proposed method provides a very simple, fast, and solvent-free procedure to achieve sample pretreatment prior to the trace-level screening determination of organochloride pesticides by gas chromatography.  相似文献   

19.
The organic solvent film formed within a hollow fiber was used as an extraction interface in the headspace liquid-phase microextraction (HS-LPME) of organochlorine pesticides. Some common organic solvents with different vapor pressures (9.33-12,918.9 Pa) were studied as extractants. The results indicated that even the solvent with the highest vapor pressure (cyclohexane) can be used to carry out the extraction successfully. However, those compounds (analytes) with low vapor pressures could not be extracted successfully. In general, the large surface area of the hollow fiber can hasten the extraction speed, but it can increase the risk of solvent loss. Lowering the temperature of the extraction solvent could not only reduce solvent loss (by lowering its vapor pressure) but also extend the feasible extraction time to improve extraction efficiency. In this work, a solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction (SC-DHF-HS-LPME) approach was developed. By lowering the temperature of the solvent, the evaporation can be decreased, the extraction time can be lengthened, and, on the contrary, the equilibrium constant between headspace phase and extraction solvent can be increased. In dynamic LPME, the extracting solvent is held within a hollow fiber, affixed to a syringe needle and placed in the headspace of the sample container. The extracting solvent within the fiber is moved to-and-fro by using a programmable syringe pump. The movement facilitates mass transfer of analyte(s) from the sample to the solvent. Analysis of the extract was carried out by gas chromatography-mass spectrometry (GC-MS). The effects of identity of extraction solvent, extraction temperature, sample agitation, extraction time, and salt concentration on extraction performance were also investigated. Good enrichments were achieved (65-211-fold) with this method. Good repeatabilities of extraction were obtained, with RSD values below 15.2%. Detection limits were 0.209 microg/l or lower.  相似文献   

20.
A procedure for the analysis of228Ra in drinking water has been developed. The procedure involves separation of radium by an initial coprecipitation with lead sulfate. The isolated Pb(Ra)SO4 is then dissolved in sodium diethylenetriamine pentaacetate (DTPA). Radium-228 is co-precipitated from this solution with barium sulfate while the DTPA supernate which contains pre-existing228Ac is discarded. The purified Ba(Ra)SO4 precipitate is then allowed to ingrow, generating228Ac, which is then dissolved in DTPA, isolating both226Ra and228Ra in the precipitate while228 Ac remains in the aqueous supernate. The supernate is partitioned against di-(2-ethylhexyl phosphoric acid), HDEHP, dissolved in n-heptane, which retains the228Ac. Actinium-228 is then stripped from the organic phase by partitioning against 1M HNO3. Finally, the228Ac is coprecipitated onto cerium oxalate. The precipitate is collected on a filter and counted in a low-background beta counter. Radium-228 standards with concentrations ranging from 0.044 to 1.6 Bq were used to establish the detector counting efficiency for228Ac in cerium oxalate samples, as well as monitoring the chemical yield and absorption factors. The resultant average value of 30.3±2.1 cpm/Bq (uncertainty given at 95% level of confidence) was obtained. Various228Ra cross checks from U. S. Environmental Protection Agency (EPA) with concentrations of 0.063–0.52 Bq/l were analyzed in order to assess the performance of the procedure. The minimum detectable concentration (MDC) of228Ra in water with this procedure is 0.015 Bq/l. This is based on a one liter aliquot of sample, a 100 min couting period, and a 3 hour decay interval between the end of228Ac ingrowth and midpoint of counting. Decontamination factor studies were performed to determine the extent of the carry-over of238U,226Ra,210Po, and90Sr into the final fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号