首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A convenient procedure for the preparation of the fluorescent dye 4',5'-dichloro-2',7'-dimethoxy-5(6)-carboxyfluorescein (JOE) is reported; the overall yield achieved starting from isovanillin is 10 times higher (40% vs 4%) compared to the known procedure. Isomers (5- and 6-) are easily chromatographically separable as pentafluorophenyl esters of 3',6'-O-bis(cyclohexylcarbonyl) derivatives. Four non-nucleoside JOE phosphoramidites based on 5- and 6-isomers and flexible 6-aminohexanol (AH) or rigid 4-trans-aminocyclohexanol (ACH) linkers have been prepared and used for oligonucleotide labeling. Spectral and photophysical properties of 5'-JOE-modified oligonucleotides have been studied. Fluorescence quantum yield of the dye correlates with the nature of the linker (rigid vs flexible) and with the presence of dG nucleosides in close proximity to a JOE residue.  相似文献   

2.
Hydrolytic reactions of guanosyl-(3',3')-uridine and guanosyl-(3',3')-(2',5'-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2'-hydroxyl group as a hydrogen-bond donor upon departure of the 3'-uridine moiety. Under neutral and basic conditions, guanosyl-(3',3')-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH(-)]) of the P-O3' bonds, giving uridine and guanosine 2',3'-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2'- and 3'-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3' bond of guanosyl-(3',3')-(2',5'-di-O-methyluridine) to yield 2',5'-O-dimethyluridine and guanosine 2',3'-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn(2+) on the cleavage of the P-O3' bonds of guanosyl-(3',3')-uridine is modest: about 6-fold acceleration was observed at [Zn(2+)] = 5 mmol L(-)(1) and pH 5.6. With guanosyl-(3',3')-(2',5'-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2'-hydroxyl group on the departure of the 3'-linked nucleoside, are discussed.  相似文献   

3.
4.
5.
6.
7.
The acidity constants of guanylyl(3'-->5')guanosine (GpG(-)) and 2'-deoxyguanylyl(3'-->5')-2'-deoxyguanosine [d(GpG)(-)] for the deprotonation of their (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO(3)). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Ni(2+), or Cd(2+) (= M(2+)) and (GG-H)(2-), and in the case of Mg(2+) also of (GG-2H)(3-), where GG(-) = GpG(-) or d(GpG)(-). The stability constants of the M(GG)(+) complexes were estimated. The acidity constants of the H(dGuo)(+) and dGuo species (dGuo = 2'-deoxyguanosine) and the stability constants of the corresponding M(dGuo)(2+) and M(dGuo-H)(+) complexes were also measured. Comparison of these and related data allows the conclusion that N7 of the 5'G unit in GG(-) is somewhat more basic than the one in the 3'G moiety; the same holds for the (N1)(-) sites. On the basis of comparisons with the stability constants measured for the dGuo complexes, it is concluded that M(2+) binding of the GG dinucleoside monophosphates occurs predominantly in a mono-site fashion, meaning that macrochelate formation is not very pronounced. Indeed, it was a surprise to find that the stabilities of the complexes of dGuo or (dGuo-H)(-) and the corresponding ones derived from GG(-) are so similar. Consequently, it is suggested that in the M(GG)(+) and M(GG-H) complexes the metal ion is mainly located at N7 of the 5'G unit since this is the more basic site allowing also an outer-sphere interaction with the C6 carbonyl oxygen and because this coordination mode is also favorable for an electrostatic interaction with the negatively charged phosphodiester bridge. It is further suggested that Mg(2+) binding (which is rather weak compared to that of Ni(2+) and Cd(2+)) occurs mainly in an outer-sphere mode, and on the basis of the so-called Stability Ruler it is concluded that the binding properties of Zn(2+) to the GG species are similar to those of Ni(2+) and Cd(2+).  相似文献   

8.
It is well known that Mg2+ and other divalent metal ions bind to the phosphate groups of nucleic acids. Subtle differences in the coordination properties of these metal ions to RNA, especially to ribozymes, determine whether they either promote or inhibit catalytic activity. The ability of metal ions to coordinate simultaneously with two neighboring phosphate groups is important for ribozyme structure and activity. However, such an interaction has not yet been quantified. Here, we have performed potentiometric pH titrations to determine the acidity constants of the protonated dinucleotide H2(pUpU)-, as well as the binding properties of pUpU3- towards Mg2+, Mn2+, Cd2+, Zn2+, and Pb2+. Whereas Mg2+, Mn2+, and Cd2+ only bind to the more basic 5'-terminal phosphate group, Pb2+, and to a certain extent also Zn2+, show a remarkably enhanced stability of the [M(pUpU)]- complex. This can be attributed to the formation of a macrochelate by bridging the two phosphate groups within this dinucleotide by these metal ions. Such a macrochelate is also possible in an oligonucleotide, because the basic structural units are the same, despite the difference in charge. The formation degrees of the macrochelated species of [Zn(pUpU)]- and [Pb(pUpU)]- amount to around 25 and 90 %, respectively. These findings are important in the context of ribozyme and DNAzyme catalysis, and explain, for example, why the leadzyme could be selected in the first place, and why this artificial ribozyme is inhibited by other divalent metal ions, such as Mg2+.  相似文献   

9.
以偏苯三酸酐、4-氯间苯二酚为原料,在ZnCl2催化下反应得到2',7'-二氯-5(6)-羧基荧光素混合物,并用柱色谱进行异构体分离.对取代基团对其荧光性能影响的研究发现,顶环上引入氯使其最大荧光激发波长和荧光发射波长发生红移,荧光强度有所增加;底环上引入羧基,其Stokes位移和荧光量子产率略有降低,但该活性基团的引入将更有利于对生物体进行检测.由此表明,2',7'-二氯-5(6)-羧基荧光素有望用于荧光探针.  相似文献   

10.
11.
A new terthiophene monomer: 3',4'-dimethoxy-2,2':5',2"-terthiophene (TMT) was synthesized and characterized by 1H-NMR, 13C-NMR and FTIR. The solid-state oxidative polymerizations of TMT were performed in various ratios of oxidant (FeCl?) to monomer (TMT). The resulting polymers were characterized by 1H-NMR, FTIR, UV-vis-NIR, GPC, X-ray diffraction, CV, as well as TGA and conductivity measurements. The structure and properties of poly (TMT) were compared with those of polyterthiophene [poly(TT)] and poly (3',4'-ethylenedioxy-2,2':5',2"-terthiophene) [poly(TET)] prepared under the same polymerization conditions. After comparative analysis with poly(TT) and poly(TET), the effects of the dimethoxy substituent and FeCl? on the structural and physicochemical properties of the poly(TMT)s were discussed in depth. The comparison suggested that the dimethoxy-substituted polymer did not display higher crystallinity, thermal stability, conductivity and electrochemical activity than ethylenedioxy substituted one. The results also showed that the effect of FeCl? on poly(TMT) was similar that seen with the poly(TT), in which the oxidation degree, electrochemical activity and conductivity increased steadily with increasing [FeCl?/[TT] ratio. Furthermore, the poly(TMT) and poly(TT) are mostly made up of dimers with a small amount of higher molecular weight components.  相似文献   

12.
The diastereospecific chemical syntheses of uridine-2',3',4',5',5' '-(2)H(5) (21a), adenosine-2',3',4',5',5' '-(2)H(5) (21b), cytidine-2',3',4',5',5' '-(2)H(5)(2)H(5) (21c), and guanosine-2',3',4',5',5' '-(2)H(5) (21d) (>97 atom % (2)H at C2', C3', C4', and C5'/C5' ') have been achieved for their use in the solution NMR structure determination of oligo-RNA by the Uppsala "NMR-window" concept (refs 4a-c, 5a, 6), in which a small (1)H segment is NMR-visible, while the rest is made NMR-invisible by incorporation of the deuterated blocks 21a-d. The deuterated ribonucleosides 21a-d have been prepared by the condensation of appropriately protected aglycone with 1-O-acetyl-2,3,5-tri-O-(4-toluoyl)-alpha/beta-D-ribofuranose-2,3,4,5,5'-(2)H(5) (19), which has been obtained via diastereospecific deuterium incorporation at the C2 center of appropriate D-ribose-(2)H(4) derivatives either through an oxidation-reduction-inversion sequence or a one-step deuterium-proton exchange in high overall yield (44% and 24%, respectively).  相似文献   

13.
14.
The cooperative action of multiple Cu(II) nuclear centers is shown to be effective and selective in the hydrolysis of 2'-5' and 3'-5' ribonucleotides. Reported herein is the specific catalysis by two trinuclear Cu(II) complexes of L3A and L3B. Pseudo first-order kinetic studies reveal that the L3A trinuclear Cu(II) complex effects hydrolysis of Up(2'-5')U with a rate constant of 28 x 10(-)(4) min(-)(1) and Up(3'-5')U with a rate constant of 0.5 x 10(-)(4) min(-)(1). The hydrolyses of Ap(3'-5')A and Ap(2'-5')A proceed with rate constants of 24 x 10(-)(4) min(-)(1) and 0.5 x 10(-)(4) min(-)(1) respectively. The L3A trinuclear Cu(II) complex demonstrates high specificity for Up(2'-5')U and Ap(3'-5')A. Similar studies with the more rigid L3B trinuclear Cu(II) complex shows no selectivity and yields lower rate constants for hydrolysis. The selectivity observed with the L3A ligand is attributed to the geometry of the ligand-bound diribonucleotide which ultimately dictates the proximity of the attacking hydroxyl and the phosphoester to a Cu(II) center for activation and subsequent hydrolysis.  相似文献   

15.
16.
The trimeric 3′-deoxyadenylyl-(2′→5′)-3′-deoxyadenylyl-(2′→5′)-3′-deoxyadenosine (12) was synthesized via the phosphotriester approach starting from cordycepine (1). Various physical data have been determined and compared with those of the ribo-A2′p5′A2′p5′A analog.  相似文献   

17.
18.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl 2',5'-di-O-methylurid-3'-yl 5'-O-methylurid-3'(2')-yl phosphate (1a,b) have been followed by RP-HPLC over a wide pH range to evaluate the feasibility of occurrence of phosphate-branched RNA under physiological conditions. At pH <2, where the decomposition of is first order in [H3O+], the P-O5' bond is cleaved 1.5 times as rapidly as the P-O3' bond. Under these conditions, the reaction probably proceeds by an attack of the 2'-OH on the phosphotriester monocation. Over a relatively wide range from pH 2 to 5, the hydrolysis is pH-independent, referring to rapid initial deprotonation of the attacking 2'-OH followed by general acid catalyzed departure of the leaving nucleoside. The P-O5' bond is cleaved 3 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first order in [HO-], consistent with an attack of the 2'-oxyanion on neutral phosphate. The product distribution is gradually inversed: in 10 mmol L(-1) aqueous sodium hydroxide, cleavage of the P-O3' bond is favored over P-O5' by a factor of 7.3. The results of the present study suggest that the half-life for the cleavage of under physiological conditions is only 100 s. Even at pH 2, where is most stable, the half-life for its cleavage is less than one hour and the isomerization between and is even more rapid than cleavage. The mechanisms of the partial reactions are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号