首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Living organisms can control the size, shape, and structure of minerals. Attempts to reproduce this biological control in the laboratory often use Langmuir monolayers of long-chain carboxylic acids. We use large-scale molecular dynamics simulations to calculate the interfacial energies of calcite crystals grown on stearic (octadecanoic) acid monolayers. In light of these simulations we discuss the argument that the orientation of the growing mineral is controlled by the organic substrate acting as a template which the mineral must fit in order to grow.  相似文献   

2.
Small acidic peptides comprising a repeating Phe-Asp sequence motif exert control, in vitro, on the morphology of calcite crystals similar to natural proteins from calcified tissues.  相似文献   

3.
An oligopyridine foldamer, whose structure is dictated by bifurcated hydrogen bonds, was designed to recognize the surface of calcite through three carboxylates, projected from one face of the molecule. At low concentrations of the trimer, elongated calcite crystals with angular, teeth-like growths, identified as {0l} faces, were exclusively formed. In the presence of a related monomer, only calcite rhombohedra are formed, indicating that it is the ordered array of carboxylates that causes the morphological changes, via a specific interaction between the foldamer and the newly expressed faces of the growing calcite crystals.  相似文献   

4.
Star-shaped calcite crystals with symmetry were obtained in the mixed solvent of ethanol and H2O (4:1 vol%) using Mg2+ as grow mineralizer without any organic template under the solvothermal condition. The crystals branched to the six directions perpendicular to the c-axis. In the process, Mg2+ takes an important influence on such novel morphology via entering the crystal lattice of calcite to absorb the special plane and change the general growth habit. The aqueous solvent is favorable to form aragonite, while the presence of alcohol promotes the formation of calcite, the thermodynamically stable phase. The products were characterized by the techniques of XRD, SEM, SAED, IR and ICP. The formation process was also primarily studied.  相似文献   

5.
A novel nano-porous hydrogel (NPH) was synthesized via graft copolymerization of sodium acrylate (Na-AA) and acrylamide (AAm) onto salep backbones and its application as a carrier matrix for oral delivery of tetracycline hydrochloride (TH) was investigated. The Taguchi method as a strong experimental design tool was used for synthesis optimization. The swelling behavior of optimum hydrogel was measured in various media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetrical analysis (TGA). The study of the surface morphology of the hydrogels using SEM and AFM showed a nanoporous (average pore size: 180 nm) structure for the sample obtained under optimized conditions. The drug delivery results demonstrated that this NPH could successfully deliver a drug to the intestine without losing the drug in the stomach, and could be a good candidate as an orally administrated drug delivery system.  相似文献   

6.
Epitaxial relationships between the surfaces of inorganic and bioorganic crystals can be an important factor in crystal nucleation and growth processes in a variety of biological environments. Crystalline cholesterol monohydrate (ChM), a constituent of both gallstone and atherosclerotic plaques, is often found in association with assorted mineral phases. Using in situ atomic force microscopy (AFM) and well-characterized model bile solutions, the nucleation and epitaxial growth of ChM on calcite (104) surfaces in real-time is demonstrated. The growth rates of individual cholesterol islands formed on calcite substrates were determined at physiological temperatures. Evidence of Ostwald's ripening was also observed under these experimental conditions. The energetics of various (104) calcite/(001) ChM interfaces were calculated to determine the most stable interfacial structure. These simulations suggest that the interface is fully hydrated and that cholesterol hydroxyl groups are preferentially positioned above carbonate ions in the calcite surface. This combination of experimental and theoretical work provides a clearer picture of how preexisting mineral seeds might provide a viable growth template that can reduce the energetic barrier to cholesterol nucleation under some physiological conditions.  相似文献   

7.
The lateral alignment of [012] habit-modified calcite crystals with respect to a carboxylic acid terminated self-assembled monolayer (SAM) of thiols has been determined. The crystals were grown from a Kitano solution (pH 5.6-6.0), and the samples were investigated with scanning electron microscopy, X-ray diffraction, and polarization microscopy. For the first time, a lattice match in one direction, which is the nearest neighbor direction of the SAM and the calcite <100> direction, has been experimentally shown. The experimental results are in good agreement with the theoretical models proposed in previous work, and it is expected that this method can be applied to similar systems where inorganic crystals nucleate with a preferred orientation to a SAM.  相似文献   

8.
A new approach for the synthesis of amide macrocycles, based on the use of organo-clay derivatives as controlling template, is proposed as an alternative to the rotaxane method. Dications of p-xylylene diamine inserted in the clay interlayer space act as molding pillars around which neutral diamine molecules are erected via hydrogen bonding and pi-pi interactions to form supramolecular arrays. Condensation of diamines in the supramolecular arrays with diacetyl dichlorides yields various tetramide macrocycles in good yields. Shape, aromaticity and dimensions of the reactants are factors affecting the condensation reaction.  相似文献   

9.
We report here a simple pathway to thermally assemble acene-based molecules into large crystals without modification of their chemical structures. Differential scanning calorimetry was used to characterize properly thermal events occurring during successive heating and cooling processes. More interestingly, observations by means of polarized light microscopy (POM) revealed that a spontaneous formation of screw dislocations within crystals during the isothermal treatment triggered a structural reorganization by forming large and well-defined spiral architectures. After this reorganization, new crystals showed an excellent ordering in both vertical and horizontal directions. Due to the richness in pi-electrons of acene-based molecules, we expect this work of importance to organic electronics, especially in the design of new molecular building blocks and investigation of their assembly into sophisticated supramolecular structures.  相似文献   

10.
An idempotent density matrix in which the orbitals are expanded in Bloch sums is used in the density matrix equation for ρ1(1,1′) to obtain an equation appropriate for a crystal. The general equation is presented as well as its simplification for the single-cell approximation and the nearest-neighbor approximation.  相似文献   

11.
Novel rod-shaped calcite crystals are formed by precipitation from cetyltrimethylammonium bromide (CTAB)/1-pentanol/cyclohexane microemulsions containing calcium chloride and ammonium carbonate. The calcium carbonate initially precipitates as hexagon-shaped vaterite crystals. The vaterite crystals transform to unusual rod-shaped calcite crystals over several days. The rod-shaped calcite crystals are prismatic, with the longest crystal axis displaying (110) crystal faces. A possible mechanism of crystal growth is discussed. The elongated shape of the crystals facilitates the assembly into hierarchical structures and can allow the crystals to be used as templates for fabricating advanced materials.  相似文献   

12.
Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated.  相似文献   

13.
Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (δ13C and δ18O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO2 and water during calcite formation and degradation processes. Isotopic change of the initial δ13C and δ18O in carbonate matrix was caused by alteration of the primary source of CO2 and H2O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO2 from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter δ18O and δ13C in lime mortar.  相似文献   

14.
X-ray studies performed during the growth of CdCO(3) and MnCO(3) crystals from supersaturated aqueous solutions, at fatty acid monolayer templates, reveal that the nucleates are nearly three-dimensional powders below a threshold supersaturation. However, at higher supersaturations, the crystals are preferentially oriented with the {0 1 2} direction vertical. Scanning electron microscope images of samples transferred to substrates show discrete crystals at low concentrations, while at higher concentrations the crystals self-aggregate to form linear chains and sheets. The authors speculate that preferential alignment at the organic-inorganic interface is enhanced as a consequence of oriented aggregation of crystals. The role of monolayer-ion interactions in governing the morphologies and the resulting orientation of the inorganic nucleate is discussed.  相似文献   

15.
16.
17.
Gel formations of water-soluble cationic ornithine polypeptides were examined using organic aliphatic crosslinking agents such as dialdehydes and diketones in water systems. When 1/20-5 equivalent molar amounts of organic crosslinking agents were added to the ornithine polypeptide systems, the corresponding gels were formed. Among the organic crosslinking agents used, glutaraldehyde was the most effective for the gel formation. As a whole, the molecular weight of the samples, the amino acid compositions, the crosslinking agents used, the molar ratios between crosslinking agents and functional residues, and system pH levels were found to play roles in the gel formation. The gels formed were characterized by swelling properties and by the selective adsorption ability of some amino acids. The polyornithine gels exhibited reversible, but hysteretic swelling in a water-acetone mixed solvent. Due to the cationic δ-amino moieties which remain unreacted, the acidic amino acid, aspartic acid, was adsorbed into the gels' matrix, exhibiting the predominant adsorption. Biodegradable characteristics of the copoly (ornithine tyrosine) [copoly (Orn Tyr)] gels by chymotrypsin were also investigated.  相似文献   

18.
Active matrix liquid crystal displays belong to one of the fastest growing fields in display research and development. Several pocket TVs using this technology are already available commercially. High quality displays for TV and instrumentation require an understanding and optimization of liquid crystal material parameters. We have, therefore, investigated the influence of the elastic, dielectric and optic properties on the electrical resistance of the liquid crystal as well as on the response times and the viewing angle dependence of active matrix displays. Based on correlations derived from our investigations, we have developed new liquid crystals which have suitable properties and a very high electrical resistivity.  相似文献   

19.
Active matrix liquid crystal displays belong to one of the fastest growing fields in display research and development. Several pocket TVs using this technology are already available commercially. High quality displays for TV and instrumentation require an understanding and optimization of liquid crystal material parameters. We have, therefore, investigated the influence of the elastic, dielectric and optic properties on the electrical resistance of the liquid crystal as well as on the response times and the viewing angle dependence of active matrix displays. Based on correlations derived from our investigations, we have developed new liquid crystals which have suitable properties and a very high electrical resistivity.  相似文献   

20.
In this work, a supramolecular hydrogel formed from N,N',N'-tris(3-pyridyl)-trimesic amide was reported to serve as the matrix for the growth of biominerals. The organic hydrogel scaffold contains nitrogen heterocyclic ring and amide groups that can bind anions of the mineral (specially here, carbonate ions and phosphate ions) through hydrogen bonding interactions and act as the biomineralization active sites for growing biominerals. Calcium carbonate nucleated on the site of the hydrogel fiber where carbonate ions bonded and left obvious hydrogel fiber prints on the obtained product. Calcium phosphate grew into curved platelike nanostructures along the hydrogel fibrous network. XRD pattern and FT-IR spectra confirmed the formation of minerals on the hydrogel. The results indicate that the hydrogen bonding interaction can provide strong enough binding force for the growth of the minerals on organic scaffolds. Our finding extends the organic scaffolds into biodegradable small molecule hydrogels and also extends the growth centers of the minerals from conventional carboxylate groups binding Ca(2+) to amide and pyridyl groups binding PO(4)(3-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号