首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different sizes of nanotubes of poly(2-methoxy-5-(n-hexadecyloxy)-p-phenylene vinylene)(MH-PPV) have been fabricated at the air/water interface by compressing a monolayer of MH-PPV beyond its collapse point, and their structural characteristics were studied by means of TEM, AFM, SAXRD, IRRAS.  相似文献   

2.
Monolayer films on the neutral water substrate were obtained by spreadingN-trifluoroacetic anhydride (NTF)-modified nylon 66 or nylon 612 in chloroform solutions. Alternatively, monolayer films were obtained by spreading from nylon 66 solutions in the 31 mixture of benzene (B) and phenol (P). The temperatures studied are 10.3°, 14.7°C, and 19.4°C. The isothermss of surface pressure (), and surface moment () against surface area per residue (A) were determined. The -A isotherms of the NTF-modified nylon 66/chloroform and the nylon 66/BP were found to be an expanded type, while that of NTF-modified nylon 612/chloroform was of a condensed type. The NTF-modified nylon 66/chloroform solutions could yield well-spread films even higher concentrations than nylon 66/BP solutions. In the -A isotherms at 10.3° and 14.7°C, the surface moments are constant at 143 mD/residue for NTF-modified nylon 66/chloroform, and 340 mD/residue for nylon 66/BP until the surface area reaches where the -A isotherms show a transition point. After the transition point, the surface moments for both systems drop steadily. However, the surface moment at 19.4°C shows a maximum at the transition point. Possible configuration of the nylon 66 residue in monolayer is discussed.  相似文献   

3.
Thermodynamic analyses of surface pressure-area (Π-A) isotherms and Brewster angle microscopy (BAM) reveal that poly(ε-caprolactone) (PCL) with a weight average molar mass of Mw = 10 kg mol−1 and polydispersity index of Mw/Mn = 1.25 and poly(t-butyl acrylate) (PtBA, Mw = 25.7 kg mol−1; Mw/Mn = 1.07) form compatible blends as Langmuir films below the dynamic collapse transition for PCL at Π = 11 mN m−1. For PCL-rich blends, in situ BAM studies reveal growth of PCL crystals for compression past the PCL collapse transition. PCL crystals grown in the plateau regime of the Π-A isotherm exhibit a dendritic morphology presumably resulting from the rejection of PtBA from the growing PCL crystals and hindered diffusion of PCL from the surrounding monolayer to the crystal growth fronts. The ability to transfer the PCL dendrites as Langmuir–Schaefer films onto silicon substrates spincoated with a polystyrene layer facilitates detailed morphological characterization by optical and atomic force microscopy (AFM). AFM reveals that the dendritic branching occurs along the {100} and {110} sector boundaries and is essentially independent of composition. AFM also reveals that the average thickness of PCL dendrites formed at room temperature (22.5 °C), ∼7–8 nm, is comparable with that of PCL crystals grown from single-component PCL Langmuir films and spincoated thin films. In contrast, for PtBA-rich blend films PCL crystallization is suppressed. These findings establish PCL blends as an ideal system for exploring the interplay between chain diffusion and crystal growth in a two-dimensional confined geometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3300–3318, 2007  相似文献   

4.
This is to report a study of chain conformation of poly(dimethylsiloxane) (PDMS) in spread monolayers at the air/water interface (A/W) with the aid of vibrational sum frequency spectroscopy (VSFS). We find that methyl groups of PDMS chains at the interface are completely disordered in the dilute regime of the surface density. At higher surface densities, however, the two methyl groups on the repeating unit point into the air asymmetrically; one points more normal to the interface, whereas the other lies more parallel to the interface. In the first collapsed regime, where the surface pressure of the PDMS monolayer reaches a plateau value of 8.7 mN/m, the signal intensity at 2915 cm (-1), assigned to the symmetric vibrational frequency of the methyl groups, is found independent of the surface density. On the basis of this finding, we propose that PDMS chains, in the first collapse regime at the A/W, form asymmetric layers. Thus, our proposal lends support to earlier works by Langevin's group to refute a widely speculated helix model that was based on energy minimization in the crystalline state of PDMS. In short, the energy consideration in the bulk crystalline state does not provide meaningful guidance as to the chain conformation of the monolayer at the A/W.  相似文献   

5.
Surface pressure-induced crystallization of poly(epsilon-caprolactone) (PCL) from a metastable region of the surface pressure-area per monomer (Pi-A) isotherm in Langmuir monolayers at the air/water (A/W) interface has been captured in real time by Brewster angle microscopy (BAM). Morphological features of PCL crystals grown in Langmuir films during the compression process exhibit four fully developed faces and two distorted faces. During expansion of the crystallized film, polymer chains slowly detach from the crystalline domains and diffuse back into the monolayer as the crystals "melt". Typical diffusion-controlled morphologies are revealed by BAM during the melting process as the secondary dendrites melt away faster, that is, at a higher surface pressure than the principal axes. Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the polymer chain axes perpendicular to the substrate surface, while atomic force microscopy reveals a crystal thickness of approximately 7.6 nm.  相似文献   

6.
Brewster angle microscopy (BAM) shows that a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS) nanofiller, octaisobutyl-POSS, forms aggregates at all surface concentrations at the air/water interface. When amphiphilic poly(dimethylsiloxane) (PDMS) is blended with the octaisobutyl-POSS (>10 wt % PDMS), the degree of POSS aggregation dramatically decreases. Thermodynamic analyses and morphology studies through surface pressure-area per monomer isotherm data and BAM, respectively, exhibit three distinct composition regimes: (1) Blends with >70 wt % POSS have unstable isotherms whose shapes deviate from those of PDMS and form large rigid domains comparable to but smaller than pure, octaisobutyl-POSS films. (2) At compositions between approximately 40 and 70 wt % POSS, the isotherms' features are qualitatively similar to those of pure PDMS, and extensive nanofiller "networks" are observed by BAM. (3) For compositions < or = approximately 30 wt % POSS, the isotherms are essentially those of pure PDMS with small POSS domains dispersed in the PDMS matrix. These results provide further insight into nanofiller aggregation mechanisms and dispersion that may be present in thicker films and bulk systems.  相似文献   

7.
Mixtures of a polyhedral oligomeric silsesquioxane, trisilanolisobutyl-POSS, and a polar silicone, poly(dimethyl-co-methylvinyl-co-methyl, 2-diphenyl phosphine oxide ethyl) siloxane (PDMS-PO), spread as Langmuir monolayers at the air/water interface are used to examine the surface phase behavior and aggregation of trisilanolisobutyl-POSS as a function of silicone composition. Analyses of the surface pressure-area per monomer (Pi-A) isotherms in terms of the collapse pressures and excess Gibbs free energies of mixing indicate the monolayers form slightly negative deviation mixtures. Direct observations of surface morphology with Brewster angle microscopy in the collapsed regime reveal that the governing factor for aggregation is the collapse Pi of the component with a stronger affinity for water. In trisilanolisobutyl-POSS/PDMS-PO blends, POSS aggregates as discrete domains and does not coalesce into larger aggregates or networklike structures for <80 wt % POSS, a feature that is vastly different from a previous study of POSS blended with regular poly(dimethylsiloxane).  相似文献   

8.
In a recent review of this topic [B.C. Garett, Science 303 (2004) 1146] the emphasis was on some recent experiments, in which it was found that some anions accumulate at the air/water interface and not in the bulk, as usually happens to the cations, and on some simulations which explained those positive surface adsorption excesses. Because a large number of these experiments could be explained on the basis of some simple physical models proposed by the authors for the interaction between the ions and the air/water interface [M. Manciu, E. Ruckenstein, Adv. Colloid Interface Sci. 105 (2003) 63; Adv. Colloid Interface Sci. 112 (2004) 109; Langmuir 21 (2005) 11312], those models are reviewed in the present note, the goal being to draw attention to them.  相似文献   

9.
10.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

11.
Poly(epsilon-caprolactone)/polystyrene (PCL/PS) blends, where nonamphiphilic PS is glassy in the bulk state at the experimental temperature of 22.5 degrees C, are immiscible as Langmuir films at the air/water (A/W) interface. Surface pressure-area per monomer isotherm analyses indicate that the surface concentration of amphiphilic PCL is the only factor influencing the surface pressure below the collapse transition. For PS-rich blends, Brewster angle microscopy (BAM) studies at the A/W interface and atomic force microscopy studies on Langmuir-Schaefer films reveal that PS nanoparticle aggregates formed at very low surface pressures can form networks upon further compression. The morphologies seen in PS-rich blends (networklike rings) are consistent with a recent study of a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS), octaisobutyl-POSS, blended with amphiphilic poly(dimethylsiloxane), suggesting that the nonamphiphilic PS aggregates at the A/W interface produce domains with dipole densities that differ from that of pure PCL. In all composition regimes, the amphiphilic PCL phase tends to spread and form a continuous surface layer at the A/W interface, while simultaneously improving the dispersion of nonamphiphilic PS domains. During film expansion, BAM images show a gradual change in the surface morphology from highly continuous networklike structures (PS-rich blends) to broken ringlike structures (intermediate composition) to small discontinuous aggregates (PCL-rich blends). This study provides valuable information on the morphological evolution of semicrystalline PCL-based polymer blends confined in a "two-dimensional" geometry at the A/W interface and fundamental insight into the influence of microstructure (domain size, phase-separated structures, crystalline morphology, etc.) on the interfacial properties of blends as Langmuir films.  相似文献   

12.
 The surface pressure (Π) vs surface concentration (Γs) curves of the hydrogen-bonded polymer blend poly(vinylacetate)+ poly(4-hydro-xystyrene) (PVAc+P4HS) have been measured at 25 °C onto a water subphase at pH=2.0. While PVAc forms extended monolayers, and the free surface of water is found to be a good solvent for it, P4HS forms compressed monolayers, and the surface is a near Θ-type solvent for it. PVAc and P4HS form miscible non-ideal monolayers until near the collapse pressure through the whole concentration range. The composition dependence of the Π–Γs curves is rather complex. Contrary to what might be expected, the addition of PVAc to the blend does not reduce the rigidity of the monolayer until its weight fraction is larger than 0.5. The compressibility data of the P4HS-rich monolayers suggest the existence of a second maximum at high surface coverages, a result already observed in some polysiloxanes. Received: 11 March 1998 Accepted: 7 May 1998  相似文献   

13.
The Langmuir film balance technique was used to determine the hydrolytic kinetics of monolayers of the stereocomplex formed from mixtures of enantiomeric polylactides, poly(L-lactide) (L-PLA) and poly(D-lactide) (D-PLA), spread at the air-water interface. The present study investigated parameters such as degradation medium, mixture composition, and time on the relative degradation rate. The pi-A isotherms of monolayers of the mixtures provide clear evidence for the presence of a stereocomplex; the isotherms of monolayers of individual polyenantiomer show a transition at about 8.5 mN/m, whereas the transition of monolayers containing a stereocomplex formed from the equimolar mixture shifted to higher surface pressure, about 11 mN/ m. The rate of hydrolysis was recorded by a change in occupied area when the monolayer is maintained at a constant surface pressure. The hydrolysis of the mixture monolayers under basic conditions was slower than that of individual polyenantiomer monolayers, depending on the composition or the degree of complexation. In the presence of proteinase K, the enzymatic hydrolysis rate of mixture monolayers with >50 mol % l-PLA was much slower than that of the single-component L-PLA monolayer. The monolayers formed from mixtures with < or =50 mol % L-PLA did not show any change of occupied areas. This result is explained by the inactivity of D-PLA and stereocomplexed chains to the enzyme. From both results, it can be concluded that the retardation of the hydrolysis of mixture monolayers is mainly due to a strong interaction between D- and L-lactide unit sequences, which prevents the penetration of water or enzyme into the bulk.  相似文献   

14.
Chiral interfaces and molecular recognition phenomena are of special interest not only for the understanding of biological recognition processes but also for the potential application in material science. Langmuir monolayers at the air-water interface have successfully been used as simple models to mimic biological phenomena. Recent experimental studies revealed that both chirality and molecular recognition processes of amphiphiles are controlling the features of the nano-aggregates at the air/water interface. The objective of experimental studies has been to gain information about the properties of mesoscopic length scale aggregates obtained on the basis of chiral discrimation effects and the formation of supramolecular entities by molecular recognition of non-surface active species dissolved in the aqueous subphase. Differences in the two-dimensional morphology and lattice structures of the nano-aggregates cannot be explained by macroscopic theories and needed information about the detailed orientation and distance dependence of the intermolecular interaction within the aggregates. First new bottom-up studies have been directed toward understanding the driving forces for the aggregation processes of monolayers. Different types of interactions have been successfully considered using semi-empirical quantum chemical methods. The possibilities of Langmuir-Blodgett (LB) patterning to be an alternative paradigm for large-area patterning with mesostructured features are discussed.  相似文献   

15.
Using combined path integral-molecular dynamics simulation techniques, we analyze electronic solvation at the water/air interface. Superficial electrons present a considerable extent of spatial confinement, somewhat less marked but still comparable to that found in bulk. The characteristics of the interfacial polarization promote an overall structure for the solvated electron-polymer which looks flatter along the direction perpendicular to the interface. Spatial and orientational responses of different slabs in the close vicinity of the interface were also investigated. Solvent configurations obtained from the simulations have been used to analyze electronic excited states and the optical absorption spectrum of superficial electrons. Compared to bulk results, the distribution of bound electronic states at the surface presents similar characteristics, that is, a ground s-state and three, quasi-degenerate, p-like excited states. The reduction of the energy gap between the ground state and the rest of excited states leads to a approximately 0.52 eV red-shift in the position of the absorption maximum.  相似文献   

16.
Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.  相似文献   

17.
The adsorption of polyethylene oxide (PEO) homologues in a wide range of molecular weight (from M(PEO)=200 to 10(6)) at the air/aqueous solution interface was investigated by dynamic and static surface tension measurements. An approximate estimate for the lower limit of PEO concentration was given at which reliable equilibrium surface tension can be determined from static surface tension measurements. It was shown that the observed jump in the earlier published sigma-lg(c(PEO)) curves is attributable to the nonequilibrium surface tension values at low PEO concentrations. The adsorption behavior of short chain PEO molecules (M(PEO)1000) is similar to that of the ordinary surfactants. The estimated standard free energy of PEO adsorption, DeltaG(0), increases linearly with the PEO molecular weight until M(PEO)=1000. In this molecular weight range, DeltaG(0) was found to be approximately the fifth of the hydrophobic driving force related to the adsorption of a surfactant with the same number of methylene groups. In the case of the longer chain PEOs the driving force of adsorption is so high that the adsorption isotherm is near saturation in the experimentally available polymer concentration range. Above a critical molecular weight the PEO adsorption reveals universal features, e.g., the surface tension and the surface density of segments do not depend on the polymer molecular weight.  相似文献   

18.
Films made of cis-bis-decanoate-tin(IV) phthalocyanine (PcSn10) and racemic dipalmitoylphosphatidylcholine (DPPC) are studied with compression isotherms and Brewster angle microscopy (BAM) at the air/water interface. Films enriched in PcSn10 present phase separation elliptical-shaped domains. These domains present optical anisotropy and molecular order. They are enriched in PcSn10, and the film outside these domains is enriched in DPPC, as shown in by high-angle annular dark-field transmission electron microscopy on Langmuir-Blodgett (LB) transferred films. Film collapse area and atomic force microscopy images of LB transferred films on mica indicate that the films are actually multilayers. A computational survey was performed to determine how the PcSn10 molecules prefer to self-assemble, in films basically made of PcSn10. The relative energetic stability for several dimeric assemblies was obtained, and a crystal model of the film was developed through packing and repeating the PcSn10 molecules, along the crystallographic directions of the unit cell. Our results contribute to understanding the strong interaction between PcSn10 and DPPC at the air/water interface, where even small quantities of DPPC (~1-2%) can modify the film in an important way.  相似文献   

19.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

20.
Cationic Gemini surfactant at the air/water interface   总被引:2,自引:0,他引:2  
The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the alkyl chains reorient from tilting to vertical, forming surface micelles dispersed in the network-like ridges due to the strong interaction among film molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号