首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Owing to recent advances in electron paramagnetic resonance (EPR) imaging methodologies, it is now potentially possible to track and image, in real time in vivo, cells that had been tagged with aminoxyl spin probes. We had previously reported that living cells can accumulate 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl [1] to high (millimolar) intracellular concentrations through passive incubation with the corresponding acetoxymethyl (AM) ester [2]. In the present study, we show that under physiological conditions aminoxyl [1] is rapidly extruded by cells through an organic anion transport mechanism, resulting in an intracellular exponential lifetime (t(1/e) or tau) of just 9.84 min at 37 degree C. Through successive rational structural modifications, we arrived at (2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-ylmethyl)amine-N,N-diacetic acid [10], which can still be accumulated by cells to high intracellular concentrations, but which, with an intracellular exponential lifetime of tau]= 114 min, is well retained by cells for long periods of time, where one expects 14% retention even after 5 h. These results suggest that it should be feasible to use EPR imaging to perform in vivo tracking of populations of cells that have accumulated high intracellular levels of aminoxyls.  相似文献   

2.
[reaction: see text] Ester-containing nitrones, including 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide 5, have been reported to be robust spin traps for superoxide (O2*-). Using a chiral column, we have been able to isolate the two enantiomers of nitrone 5. With enantiomerically pure nitrone 5a and 5b we explored whether one of these isomers was solely responsible for the EPR spectrum of aminoxyl 6. Data obtained demonstrate that the spin trapping of O2*- by nitrone 5a and nitrone 5b affords the identical EPR spectra and lifetimes in homogeneous aqueous solution and exhibits the same ratio of cis and trans isomers. Quantum chemical modeling in vacuo also finds no difference, aside from the expected optical activity, arising from the difference in stereochemistry.  相似文献   

3.
Given that spin trapping/electron paramagnetic resonance (EPR) spectroscopy has become the primary technique to identify important biologically generated free radicals, such as superoxide (O(2)(*-)), in vitro and in vivo models, evaluation of the efficiency of specific spin traps to identify this free radical is paramount. Recently, a family of ester-containing nitrones has been prepared, which appears to have distinct advantages for spin trapping O(2)(*-) compared to the well-studied spin traps 5,5-dimethyl-1-pyrroline N-oxide 1 and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide 2. An important determinant in the selection of a spin trap is the rate constant (k(app)) for its reaction with O(2)(*-), and several different methods have been employed in estimating this k(app). In this paper, the two most frequently used scavengers of O(2)(*-), ferricytochrome c and Cu/Zn-SOD, were evaluated as competitive inhibitors for spin trapping this free radical. Data presented herein demonstrate that SOD is the preferred compound when determining the k(app) for the reaction of O(2)(*-) with spin traps. Using this model, the k(app) for the reaction of nitrone 1, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide 3, and 5-methoxycarbonyl-5-methyl-1-pyrroline N-oxide 4 with O(2)(*)(-) was estimated to be 24.6 +/- 3.1, 73.0 +/- 12, and 89.4 +/- 1.0 M(-1) s(-1) at pH 7.0, respectively. Several other comparative studies between known spin traps were also undertaken.  相似文献   

4.
The unique ability of nitrone spin traps to detect and characterize transient free radicals by electron paramagnetic resonance (EPR) spectroscopy has fueled the development of new spin traps with improved properties. Among a variety of free radicals in chemical and biological systems, superoxide radical anion (O(2)(?-)) plays a critical role as a precursor to other more oxidizing species such as hydroxyl radical (HO(?)), peroxynitrite (ONOO(-)), and hypochlorous acid (HOCl), and therefore the direct detection of O(2)(?-) is important. To overcome the limitations of conventional cyclic nitrones, that is, poor reactivity with O(2)(?-), instability of the O(2)(?-) adduct, and poor cellular target specificity, synthesis of disubstituted nitrones has become attractive. Disubstituted nitrones offer advantages over the monosubstituted ones because they allow bifunctionalization of spin traps, therefore accommodating all the desired spin trap properties in one molecular design. However, because of the high number of possible disubstituted analogues as candidate, a systematic computational study is needed to find leads for the optimal spin trap design for biconjugation. In this paper, calculation of the energetics of O(2)(?-) and HO(2)(?) adduct formation from various disubstituted nitrones at PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory was performed to determine the most favorable disubstituted nitrones for this reaction. In addition, our results provided general trends of radical reactivity that is dependent upon but not exclusive to the charge densities of nitronyl-C, the position of substituents including stereoselectivities, and the presence of intramolecular H-bonding interaction. Unusually high exoergic ΔG(298K,aq)'s for O(2)(?-) and HO(2)(?) adduct formation were predicted for (3S,5S)-5-methyl-3,5-bis(methylcarbamoyl)-1-pyrroline N-oxide (11-cis) and (4S,5S)-5-dimethoxyphosphoryl-5-methyl-4-ethoxycarbonyl-1-pyrroline N-oxide (29-trans) with ΔG(298K,aq) = -3.3 and -9.4 kcal/mol, respectively, which are the most exoergic ΔG(298K,aq) observed thus far for any nitrone at the level of theory employed in this study.  相似文献   

5.
In order to find ways to characterize oxygen-saturated aqueous TiO2 suspensions, the formation of photo-induced free radicals was followed by EPR spectroscopy, using as indicators N-oxide and nitrone spin trapping agents, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO), α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POB N), 4-(N-methylpyridyl)-N-tert-butylnitrone (MePyBN), as well as semi-stable free radicals, 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl (TEMPOL), cation radical of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), diammonium salt (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH). DMPO and TMPO are efficiently oxidized to the EPR-silent products via radical in termediates. Conversely, the nitrone spin traps (POBN and MePyBN) showed selective formation of hydroxyl radical spin adducts upon continuous irradiation of oxygenated TiO2 suspensions. Their concentrations increased proportionally with the amount of photocatalyst and irradiation time. The EPR spectrum of the semi-stable free radicals TEMPOL, ABTS·+ or DPPH is gradually eliminated during irradiation, and this system represents a simple technique for the evaluation of TiO2 activity.  相似文献   

6.
We performed mechanistic studies of the reaction of PBN with the physiologically relevant glutathiyl radical, GS*, formed upon oxidation of the intracellular antioxidant, glutathione, GSH. The scavenging rate constant of GS* by PBN has been measured directly by laser flash photolysis and indirectly by competitive EPR of the spin adduct of PBN and another spin trap, DMPO (5,5-dimethyl-1-pyrroline N-oxide), and was found to be 6.7 x 107 M(-1) s(-1). Reverse decomposition of the paramagnetic PBN-glutathiyl radical adduct to the nitrone and thiyl radical was observed for the first time. The rate constant for the reaction of the monomolecular decomposition of the radical adduct was found to be 1.7 s(-1). Diamagnetic, EPR-invisible products of PBN adduct degradation were studied by 1H NMR and 19F NMR using newly synthesized fluorine-substituted PBN.  相似文献   

7.
The nitrone 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) was synthesized and characterized. Spin trapping of various radicals by AMPO was demonstrated for the first time by electron paramagnetic resonance (EPR) spectroscopy. The resulting spin adducts for each of these radicals gave unique spectral profiles. The hyperfine splitting constants for the superoxide adduct are as follows: isomer I (80%), a(nitronyl)(-)(N) = 13.0 G and a(beta)(-)(H) = 10.8 G; isomer II (20%), a(nitronyl)(-)(N) = 13.1 G, a(beta)(-)(H) = 12.5 G, and a(gamma)(-)(H) = 1.75 G. The half-life of the AMPO-O(2)H was about 8 min, similar to that observed for EMPO but significantly shorter than that of the DEPMPO-O(2)H with t(1/2) approximately 16 min. However, the spectral profile of AMPO-O(2)H at high S/N ratio is distinguishable from the spectrum of the (*)OH adduct. Theoretical analyses using density functional theory calculations at the B3LYP/6-31+G//B3LYP/6-31G level were performed on AMPO and its corresponding superoxide adduct. Calculations predicted the presence of intramolecular H-bonding in both AMPO and its superoxide adduct. The H-bonding interaction was further confirmed by an X-ray structure of AMPO, and of the novel and analogous amido nitrone 2-amino-5-carbamoyl-5-methyl-1-pyrroline N-oxide (NH(2)-AMPO). The thermodynamic quantities for superoxide radical trapping by various nitrones have been found to predict favorable formation of certain isomers. The measured partition coefficient in an n-octanol/buffer system of AMPO was similar to those of DMPO and DEPMPO. This study demonstrates the suitability of the AMPO nitrone for use as a spin trap to study radical production in aqueous systems.  相似文献   

8.
本文用马来酰亚胺自旋标记(MSL)技术研究了亚油酸铂靶向脂质体与肿瘤细胞膜的相互作用, 以及它们对ESR谱的影响。亚油酸铂靶向脂质体的存在, 使MSL的乳腺癌细胞膜和S180实体瘤细胞膜的W和S的比值发生了变化, 结果表明亚油酸铂可以作用于癌细胞膜影响膜蛋白巯基结合部位, 并使癌细胞膜表面蛋白质构象改变。  相似文献   

9.
The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R=H(2)N(HN)C-C(CH(3))(2)). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern-Volmer's plot) for each spin trap showed good linearity, and their slopes, k (SB)/k (ST), were estimated to be 87.7±2.3, 267±15, 228±9, and 213±16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k (SB)/k (ST) values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.  相似文献   

10.
Spin trapping of superoxide by diester-nitrones   总被引:1,自引:0,他引:1  
The nitrone N-[(1-oxidopyridin-1-ium-4-yl)-methylidene]-1,1-bis(ethoxycarbonyl)ethylamine N-oxide (DEEPyON) was synthesized and used as a spin trapping agent. The kinetic aspects of the superoxide detection by this new spin trap and by two other diester-nitrones, i.e. 2,2-diethoxycarbonyl-3,4-dihydro-2H-pyrrole-1-oxide (DEPO) and N-benzylidene-1,1-bis(ethoxycarbonyl)ethylamine N-oxide (DEEPN), were examined by determining the rate constants for the trapping reaction and for the spin adduct decay at pH 7.2. Comparing the results obtained to those given by analogous monoester-nitrones showed that both the spin trapping and the adduct decay reactions were faster in the presence of a second ester group in the cyclic nitrone series, while the superoxide trapping capacities of linear diester-nitrones were found to be dramatically weak. It follows from this study that DEPO and 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide (EMPO) are superior when it comes to superoxide detection. Below 0.005 mol dm(-3), DEPO is to date the only nitrone capable of clearly detecting superoxide, while EMPO should be preferred at higher spin trap concentration.  相似文献   

11.
The free radical trapping properties of eight 5-alkoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO) type nitrones and those of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were evaluated for trapping of superoxide anion radicals in the presence of 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD). (1)H-NMR titrations were performed to determine both stoichiometries and binding constants for the diamagnetic nitrone-DM-beta-CD equilibria. EPR titrations were then performed and analyzed using a two-dimensional EPR simulation program affording 1 : 1 and 1 : 2 stoichiometries for the nitroxide spin adducts with DM-beta-CD and the associated binding constants after spin trapping. The nitroxide spin adducts associate more strongly with DM-beta-CD than the nitrones. The ability of the nitrones to trap superoxide, the enhancement of the EPR signal intensity and the supramolecular protection by DM-beta-CD against sodium L-ascorbate reduction were evaluated.  相似文献   

12.
Apparent rate constants, at acidic pH and neutral pH for the reaction of a family of ester-containing 5-carboxyl-5-methyl-1-pyrroline N-oxides with superoxide (O2*-) were estimated, using ferricytochrome c as a competitive inhibitor. It was of interest to note that the rate constants were similar among the different nitrones and not that significantly different from that found for 5-(diethoxyphosphoryl)-5-dimethyl-1-pyrroline N-oxide. At acidic pH, the rate constant for spin trapping O2*- was 3-fold greater than that at physiological pH. Subsequent experiments determined the half-life of aminoxyls, derived from the reaction of these nitrones with O2*-. The EPR spectra were modeled by using a global analysis method. The results clearly demonstrated that EPR spectra of all the aminoxyls were inconsistent with a model that included a single gamma-hydrogen splitting. A better interpretation modeled them as two diastereomers with identical nitrogen splittings and slightly different beta-hydrogen splittings. Detailed line width analyses slightly favored an equal line width-unequal population ratio for the two diastereomers.  相似文献   

13.
The hydroxyl radical (*OH) is an important mediator of biological oxidative stress, and this has stimulated interest in its detection. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and its alkoxycarbonyl and alkoxyphosphoryl analogues have been employed as spin traps for electron paramagnetic resonance (EPR) spectroscopic radical detection. Energies of optimized geometries of nitrones and their corresponding *OH adducts were calculated using density functional theory (DFT) at the B3LYP/6-31+G//B3LYP/6-31G level. Calculations predict that the trans adduct formation is favored in alkoxycarbonyl nitrones, while cis adducts with intramolecular H-bonding is favored for alkoxyphosphoryl nitrones. Addition of *OH to a phosphoryl-substituted nitrone is more exoergic than the carbonylated nitrones. Charge and spin densities on the nitrone spin traps were correlated with their rates of addition with *OH, and results show that the charge density on the nitronyl C, the site of *OH addition, is more positive in phosphorylated nitrones compared to DMPO and the alkoxycarbonyl nitrones. The dihedral angle between the beta-H and nitroxyl O bonds is smaller in phosphorylated nitrones, and that aspect appears to account for the longer half-lives of the spin adducts compared to those in DMPO and alkoxycarbonyl nitrones. Structures of nitrones with trifluoromethyl-, trifluoromethylcarbonyl-, methylsulfonyl-, trifluoromethylsulfonyl-, amido-, spiropentyl-, and spiroester substituents were optimized and their energies compared. Amido and spiroester nitrones were predicted to be the most suitable nitrones for spin trapping of *OH due to the similarity of their thermodynamic and electronic properties to those of alkoxyphosphoryl nitrones. Moreover, dimethoxyphosphoryl substitution at C-5 was found to be the most efficient substitution site for spin trapping of *OH, and their spin adducts are predicted to be the most stable of all of the isomeric forms.  相似文献   

14.
A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxide/hydroperoxyl radical by nitrones in buffered media is described. This method is based on a competition between the superoxide trapping by the nitrone and the spontaneous dismutation of this radical in aqueous media. EPR spectra are recorded as a function of time at various nitrone concentrations, and kinetic curves are obtained after treatment of these spectra using both singular value decomposition and pseudo-inverse deconvolution methods. Modelling these curves permits the determination of the rate constants k(T) and k(D) for the superoxide trapping and the adduct decay reactions, respectively. Kinetics parameters thus obtained with six nitrones, namely the 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (EMPO), the 5-diethoxyphosphoryl-5-methyl-3,4-dihydro-5H-pyrrole N-oxide (DEPMPO), the 5,5-dimethyl-3,4-dihydro-5H-pyrrole N-oxide (DMPO), the 1,3,5-tri[(N-(1-diethylphosphono)-1-methylethyl)-N-oxy-aldimine]benzene (TN), the N-benzylidene-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPN), and the N-[(1-oxidopyridin-1-ium-4-yl)methylidene]-1-ethoxycarbonyl-1-methylethylamine N-oxide (EPPyON), indicate that cyclic nitrones trapped superoxide faster than the linear ones. However, the low k(T) values obtained for compounds show that there is still a need for new molecules with better spin trapping capacities.  相似文献   

15.
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.  相似文献   

16.
Nitrones are potential synthetic antioxidants against the reduction of radical-mediated oxidative damage in cells and as analytical reagents for the identification of HO2* and other such transient species. In this work, the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) density functional theory (DFT) methods were employed to predict the reactivity of HO2* with various functionalized nitrones as spin traps. The calculated second-order rate constants and free energies of reaction at both levels of theory were in the range of 100-103 M-1 s-1 and 1 to -12 kcal mol-1, respectively, and the rate constants for some nitrones are on the same order of magnitude as those observed experimentally. The trend in HO2* reactivity to nitrones could not be explained solely on the basis of the relationship of the theoretical positive charge densities on the nitronyl-C, with their respective ionization potentials, electron affinities, rate constants, or free energies of reaction. However, various modes of intramolecular H-bonding interaction were observed at the transition state (TS) structures of HO2* addition to nitrones. The presence of intramolecular H-bonding interactions in the transition states were predicted and may play a significant role toward a facile addition of HO2* to nitrones. In general, HO2* addition to ethoxycarbonyl- and spirolactam-substituted nitrones, as well as those nitrones without electron-withdrawing substituents, such as 5,5-dimethyl-pyrroline N-oxide (DMPO) and 5-spirocyclopentyl-pyrroline N-oxide (CPPO), are most preferred compared to the methylcarbamoyl-substituted nitrones. This study suggests that the use of specific spin traps for efficient trapping of HO2* could pave the way toward improved radical detection and antioxidant protection.  相似文献   

17.
Three analogues of 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO, 1) labelled with two (1-d2), five (1-d5) or seven (1-d7)2H were synthesized and used to trap the tert-butylperoxyl radical. The EPR spectra of 1-d2-OOBu(t) and 1-d7-OOBu(t) spin adducts exhibited more straightforward patterns and better signal to noise ratio than those obtained with 1 or 1-d5. The use of the easily available 1-d2 as spin trap could help significantly the analysis of the EPR signals when the signal of either superoxide or alkylperoxyl spin adduct is superimposed with the signals of other spin adducts.  相似文献   

18.
Condensation of -(hydroxylamino)-2-methylpropanal with acetone and ammonia afforded 2,2,5,5-tetramethyl-3-imidazoline-1-oxyl, the first member of a series of stable nitroxyl radicals which are derivatives of 3-imidazoline. It was shown that 2,2,5,5-tetramethyl-2, 5-dihydropyrazine-1,4-dioxide can reversibly add two molecules of water or ammonia to the nitrone groups.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 931–933, May, 1993.  相似文献   

19.
The metalloporphyrin nitrone complexes [M(oep)-(CO)(DMPO)] (M = Ru, Os; oep = octaethylporphyrinato dianion; DMPO = 5,5-dimethyl-1-pyrroline N-oxide) have been prepared: the crystal structure of the Ru complex reveals a sole eta 1-O binding mode of the nitrone ligand to the metal center.  相似文献   

20.
Nitrones such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide (EMPO) have become the spin-traps of choice for the detection of transient radical species in chemical and biological systems using electron paramagnetic resonance (EPR) spectroscopy. The mechanism of decomposition of the superoxide radical anion (O2(.-)) adducts of DMPO, DEPMPO and EMPO in aqueous solutions was investigated. Our findings suggest that nitric oxide (NO) was formed during the decomposition of the O2(.-) adduct as detected by EPR spin trapping using Fe(II)N-methyl-d-glucamine dithiocarbamate (MGD). Nitric oxide release was observed from the O2(.-) adduct formed from hypoxanthine-xanthine oxidase, PMA-activated human neutrophils, and DMSO solution of KO2. Nitric oxide formation was not observed from the independently generated hydroxyl radical adduct. Formation of nitric oxide was also indirectly detected as nitrite (NO2(.-)) utilizing the Griess assay. Nitrite concentration increases with increasing O2(.-) concentration at constant DMPO concentration, while NO2(.-) formation is suppressed at anaerobic conditions. Moreover, large excess of DMPO also inhibits NO2(.-) formation which can be attributed to the oxidation of DMPO to hydroxamic acid nitroxide (DMPO-X) by nitrogen dioxide (NO2), a precursor to NO2(.-). Product analysis was also conducted to further elucidate the mechanism of adduct decay using gas chromatography-mass spectrometry (GC-MS) technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号