首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pt(C/N)(phe)(1, C/N = 2-(2'-thienyl)pyridine, phe = phenylalanine) shows a high binding affinity (ca. 10(6) dm(3) mol(-1)) and selectivity towards human serum albumin (HSA) and such binding is accompanied by an enhancement of photoluminescence at 562 nm; both the protein binding affinity and cytotoxicities of [Pt(C/N)(phe)(1), Pt(C/N)(trp)(2, trp = tryptophan) and Pt(C/N)(gly)(3, gly = glycine)] are affected by the amino acid ligand with having an IC(50) of up to 1 microM against a number of carcinoma cell lines.  相似文献   

2.
Isoquinoline-based tetradentate ligands with C(3)-symmetry, tris(1- or 3-isoquinolylmethyl)amine (1- or 3-isoTQA), have been prepared and their zinc-induced fluorescence enhancement was investigated. Upon excitation at 324 nm, 1-isoTQA shows very weak fluorescence (? = ~0.003) in DMF/H(2)O (1/1) solution. In the presence of zinc ion, 1-isoTQA exhibits fluorescence increase (? = 0.041) at 359 and 470 nm. This fluorescence enhancement at 470 nm is specific for zinc. However, 3-isoTQA exhibited a smaller fluorescence enhancement upon zinc complexation (? = 0.017, λ(em) = 360 and 464 nm) compared with 1-isoTQA. Crystal structures of zinc complexes of isoTQAs demonstrate the diminished steric crowding and shorter Zn-N(aromatic) distances compared with isoTQENs (N,N,N',N'-tetrakis(isoquinolylmethyl)ethylenediamines) leads to a higher fluorescent response toward zinc relative to cadmium.  相似文献   

3.
The geometries, electronic structures, and spectroscopic properties of a series of novel cationic iridium(III) complexes [trans-(C/N)(2)Ir(PH(3))(2)]+ (C/N = 2-phenylpyridine, 1; benzoquinoline, 2; 1-phenylpytazolato, 3; 2-(4,6-difluorophenyl)pyridimato, 4) were investigated theoretically. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. The optimized geometry structural parameters agree well with the corresponding experimental results. The unoccupied molecular orbitals are dominantly localized on the C/N ligand, while the occupied molecular orbitals are composed of Ir atom and C/N ligand. Under the time-dependent density functional theory (TDDFT) level with the polarized continuum model (PCM) model, the absorption and phosphorescence in acetonitrile (MeCN) media were calculated based on the optimized ground- and excited-state geometries, respectively. The calculated results showed that the lowest-lying absorptions at 364 nm (1), 389 nm (2), 317 nm (3), and 344 nm (4) are all attributed to a {[d(yz)(Ir) + pi(C/N)] --> [pi*(C/N)]} transition with metal-to-ligand and intraligand charge transfer (MLCT/ILCT) characters; moreover, the phosphorescence at 460 (1) and 442 nm (4) originates from the 3{[d(yz)(Ir) + pi(C/N)] [pi*(C/N)]} (3)MLCT/(3)ILCT excited state, while that at 505 (2) and 399 nm (3) can be described as originating from different types of (3)MLCT/(3)ILCT excited state (3){[d(xy)(Ir) + pi(C/N)] [pi*(C/N)]}. The calculated results also revealed that the absorption and emission transition character can be altered by adjusting the pi electron-withdrawing groups and, furthermore, suggested that the phosphorescent color can be tuned by changing the pi-conjugation effect of the C/N ligand.  相似文献   

4.
合成了三氨基胍三硝基间苯二酚盐(TAGH)2(TNR)(TAG)三氨基胍;TNR:2,4,6-三硝基间苯二酚),并对其进行了元素分析及红外光谱表征.利用X射线单晶衍射分析测定了其晶体结构.该晶体属于单斜晶系,空间群为C2/c,晶体学数据为,a=2.2892(6)nm,b=1.2802(3)nm,c=1.3661(4)nm,β=111.174(5)°,V=3.7333(16)nm3,Z=8.该化合物是由二个C(N2H3)3+与一个(C6HN3O8)2相结合而成的离子型化合物.用差示扫描量热法、热重法和微商热重法研究了该化合物的热分解过程,研究结果表明,在10 K·min-1的升温速率下,该化合物只有一个剧烈的放热分解过程,该过程发生在450.1-477.7K之间,且分解产物主要是气体产物.  相似文献   

5.
合成了三氨基胍三硝基间苯二酚盐(TAGH)2(TNR) (TAG: 三氨基胍; TNR: 2,4,6-三硝基间苯二酚), 并对其进行了元素分析及红外光谱表征. 利用X射线单晶衍射分析测定了其晶体结构. 该晶体属于单斜晶系, 空间群为C2/c, 晶体学数据为, a=2.2892(6) nm, b=1.2802(3) nm, c=1.3661(4) nm, β=111.174(5)°, V=3.7333(16) nm3, Z=8. 该化合物是由二个C(N2H3)+3与一个(C6HN3O8)2-相结合而成的离子型化合物. 用差示扫描量热法、热重法和微商热重法研究了该化合物的热分解过程, 研究结果表明, 在10 K·min-1的升温速率下, 该化合物只有一个剧烈的放热分解过程, 该过程发生在450.1-477.7 K之间, 且分解产物主要是气体产物.  相似文献   

6.
A series of cyclometalated gold(III) compounds [Au(m)(C(wedge)N(wedge)C)mL]n+ (m = 1-3; n = 0-3; HC(wedge)N(wedge)CH = 2,6-diphenylpyridine) was prepared by ligand substitution reaction of L with N-donor or phosphine ligands. The [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds are stable in solution in the presence of glutathione. Crystal structures of the gold(III) compounds containing bridging bi- and tridentate phosphino ligands reveal the presence of weak intramolecular pi pi stacking between the [Au(C(wedge)N(wedge)C)]+ units. Results of MTT assays demonstrated that the [Au(m)(C(wedge)N(wedge)C)mL]n+ compounds containing nontoxic N-donor auxiliary ligands (2) exert anticancer potency comparable to that of cisplatin, with IC50 values ranging from 1.5 to 84 microM. The use of [Au(C(wedge)N(wedge)C)(1-methylimidazole)]+ (2 a) as a model compound revealed that the gold(III)-induced cytotoxicity occurs through an apoptotic cell-death pathway. The cell-free interaction of 2 a with double-stranded DNA was also examined. Absorption titration showed that 2 a binds to calf-thymus DNA (ctDNA) with a binding constant of 4.5 x 10(5) dm3 mol(-1) at 298 K. Evidence from gel-mobility-shift assays and viscosity measurements supports an intercalating binding mode for the 2 a-DNA interaction. Cell-cycle analysis revealed that 2 a causes S-phase cell arrest after incubation for 24 and 48 hours. The cytotoxicity of 3 b-g toward cancer cells (IC50 = 0.04-4.3 microM) correlates to that of the metal-free phosphine ligands (IC50 = 0.1-38.0 microM), with [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) and dppp (dppp = 1,2-bis(diphenylphosphino)propane) being the most cytotoxic gold(III) and metal-free compounds, respectively. Compound 3 d shows a cytotoxicity at least ten-fold higher than the other gold(III) analogues; in vitro cellular-uptake experiments reveal similar absorptions for all the gold(III) compounds into nasopharyngeal carcinoma cells (SUNE1) (1.18-3.81 ng/cell; c.f., 3 d = 2.04 ng/cell), suggesting the presence of non-gold-mediated cytotoxicity. Unlike 2 a, both gold(III) compounds [Au(C(wedge)N(wedge)C)(PPh3)]+ (3 a) (PPh3 = triphenylphosphine) and [Au2(C(wedge)N(wedge)C)2(mu-dppp)]2+ (3 d) interact only weakly with ctDNA and do not arrest the cell cycle.  相似文献   

7.
在溶剂热条件下, 以原位反应为基础合成了两个碘化物(C6H8N3)+I3-(1, C6H8N3=2,3-dihydroimi-dazo[1,2-a]pyrimidin-1-ium, 2,3-二氢咪唑[1,2-α]-嘧啶鎓阳离子)和[(Cu3I4)(C8H17N2)](2, C8H17N2=N-ethyl-4-aza-1-azonia-bicyclo[2.2.2]octane, N-乙基三乙烯二铵阳离子). 用元素分析、粉末X射线衍射及单晶X射线衍射等对化合物进行了表征. 结果表明, 化合物1属于三斜晶系, P1空间群, a=0.74281(15) nm, b=0.84241(17) nm, c=0.9993(2) nm, α=82.02(3)°, β=83.30(3)°, γ=82.92(3)°, V=0.6114(2) nm3. 化合物2属于单斜晶系, P21/c空间群, a=0.68924(14) nm, b=1.0786(2) nm, c=2.2779(5) nm, β=94.84(3)°, V=1.6874(6) nm3. 在两个化合物合成中存在两种不同类型的配体原位合成反应, 即化合物1的2-氨基嘧啶和乙醇的成环反应与化合物2的三乙烯二胺和乙醇的烷基化反应.  相似文献   

8.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.  相似文献   

9.
由[Mo~3(μ~3-O)(μ-S)~3(dtp)~4(H~2O)和PbI~3^-在咪唑存在下反应获得异四核混合簇[Mo~3(PbI~3)S~4(dtp)~3(C~3H~4N~2)~3][(CH~3)~2CO]~2(2)[dtp=S~2P(OC~2H~5)~2^-]。簇合物属斜方晶系,空间群P~b~c~a(No.61),晶胞参数为a=2.3590(3),b=1.9161(5),c=2.6458(9)nm,V=11.959(6)nm^3,Z=8。结构最终偏离因子R=0.067。此四核簇分子具有[Mo~3PbS~4]类立方烷簇芯,簇分子整体对称性接近C~3~v。在同一不对称单元中,簇分子的咪唑环以(NH)和溶剂丙酮分子的氧原子形成O---H---N氢键。  相似文献   

10.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   

11.
通过固相反应,合成了新的配合物六亚甲基四胺锑(Ⅲ)、铋(Ⅲ):SbCl3(C6H12N4)2·H2O(1)、BiCl3(C6H12N4)2·H2O(2).经元素分析、X 射线粉末衍射、远红外光谱和差热 热重分析进行表征,确定了配合物的组成和结构.对XRD谱指标化,确定其晶系和晶胞参数.SbCl3(C6H12N4)2·H2O(1):a=1.2490nm,b=1.4583nm,c=1.6870nm,β=91.78°,V=3.0706nm3;BiCl3(C6H12N4)2·H2O(2):a=1.3250nm,b=1.3889nm,c=1.7449nm,β=98.94°,V=3.1725nm3.  相似文献   

12.
Electronic structures and spectroscopic properties of a series of nitrido-osmium (VI) complex ions with acetylide ligands, [OsN(C[Triple Bond]CR)(4)](-) (R[Double Bond]H, (1), CH(3) (2), and Ph (3)) were investigated theoretically. The structures of the complexes were fully optimized at the B3LYP and CIS level for the ground states and excited states, respectively. The calculated bond lengths of Os[Triple Bond]N (1.639 A in 1, 1.642 A in 2, and 1.643 A in 3) and Os-C (2.040 A in 1, 2.043 A in 2, and 2.042 A in 3) in ground state agree well with the experimental results. The bond length of Os[Triple Bond]N bond is lengthened by ca. 0.13 A in the A (3)B(2) excited state compared to the (1)A(1) ground state, which is consistent with the lower vibration frequency of nu(Os-N) ( approximately 780 cm(-1)) in the excited state than that ( approximately 1175 cm(-1)) in the ground state. Among the calculated dipole-allowed absorptions at lambda>250 nm, the intense absorption at 261 nm for 1, 266 nm for 2, and 300 nm for 3 were attributed to the (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The lowest energy absorption at lambda(max)=393 nm for 1, 400 nm for 2, and 400 nm for 3 were assigned as (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[d(xy)(Os)+pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The calculated phosphorescence emission at lambda(max)=581 nm for 1, 588 nm for 2, and 609 nm for 3 were originated from (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], and (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh))(1)(d(xy)(Os)+pi(C[Triple Bond]CPh))(1)] excited state, respectively.  相似文献   

13.
迄今, 在中温水热条件下已合成了大量具有空旷骨架结构的过渡金属磷酸盐微孔材料[1], 这类材料在非线性光学材料、磁性材料、超导材料及催化等诸多方面具有潜在的应用前景[2~5].  相似文献   

14.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

15.
Absolute (pulsed laser photolysis, 4-639 Torr N(2) or air, 240-357 K) and relative rate methods (50 and 760 Torr air, 296 K) were used to measure rate coefficients k(1) for the title reaction, OH + C(4)H(5)N → products (R1). Although the pressure and temperature dependent rate coefficient is adequately represented by a falloff parametrization, calculations of the potential energy surface indicate a complex reaction system with multiple reaction paths (addition only) in the falloff regime. At 298 K and 760 Torr (1 Torr = 1.33 mbar) the rate coefficient obtained from the parametrization is k(1) = (1.28 ± 0.1) × 10(-10) cm(3) molecule(-1) s(-1), in good agreement with the value of (1.10 ± 0.27) × 10(-10) cm(3) molecule(-1) s(-1) obtained in the relative rate study (relative to C(5)H(8), isoprene) at this temperature and pressure. The accuracy of the absolute rate coefficient determination was enhanced by online optical absorption measurements of the C(4)H(5)N concentration at 184.95 nm using a value σ(184.95nm) = (1.26 ± 0.02) × 10(-17) cm(2) molecule(-1), which was determined in this work.  相似文献   

16.
A new quinazolinone compound 2,3-dihydro-2-(2-hydroxyphenyl)-3-phenylquinazolin-4(IH)-one 3 ([C2oH16O2N2]-C2H5OH, Mr = 362.42) and compound 2-(2-hydroxybenzylidene-amino)-N-phenyl-benzamide 2 (C2oH16O2N2, Mr = 316.34) were prepared from a precursor of 2-amino-N-phenyl-benzamide 1 (C13H12ON2, Mr = 212.25). Compound 3 was characterized by single-crystal X-ray diffraction analysis. The crystal belongs to orthorhombic,space group Pbca with a = 1.2889(11), b = 1.6170(14), c = 1.7729(15) nm, V= 3.695(6) nm^3, Z= 8, F(000) = 1536, Mr = 362.42, Dc = 1.303 g/cm^3, μ(MoKa) = 0.087 mm^-1, R = 0.0447 and wR= 0.0879. The crystal structure analysis indicates that the title compound has a two-dimensional network structure formed by hydrogen bonds and electrostatic interactions.  相似文献   

17.
Two large-pore metal-doped aluminophosphates, Mn4Al5(PO4)12[N(C2H4NH3)3]3[N(C2H4NH3)2·(C2H4NH2)](NH4)2·14H2O(Mn4-NJU) and Co4Al5(PO4)12[N(C2H4NH3)3][N(C2H4NH3)2(C2H4NH2)]3·(NH4)4·13H2O(Co4-NJU), which have the same open framework structures, were hydrothermally synthesized. The structures of these compounds consist of TO4 tetrahedra, which are linked together by corner-sharing to form an open framework with unique intersecting twelve-membered ring channels in three dimensions. The compounds crystallize in cubic space group I(-4)3m with a=1.6795(2) nm and V=4.7374(9) nm3 for Mn4-NJU, and a=1.67372(19) nm and V=4.6887(9) nm3 for Co4-NJU, respectively. Single crystal structure analyses show that the protruding O atoms of the frameworks of the compounds are linked to protonated 4-(2-aminoethyl)diethylenetriamine(TREN, C6H18N4) ions in the windows by means of hydrogen-bonding under the hydrothermal condition. It is also found that the components inside the super cages of the compounds are changeable, and the metal ions M2 (M=Mn, Co) and Al3 disorderedly occupy the same crystallographic positions.  相似文献   

18.
Photolysis of diazomethylstannylene 2 (ArSn-C(N2)Si(i-Pr)3, Ar = C6H3-2,6-Tip2 (Tip = C6H2-2,4,6-(i-Pr)3)) generated formal stannaacetylene 1 as a reactive intermediate, which was evidenced by the formation of cyclic arylalkylstannylene 4 via an intramolecular carbene insertion to a CH bond of isopropyl groups. The structures of the compounds 2 and 4 were fully characterized by X-ray crystallography. Stannaacetylene 1 was directly observed by laser flash photolysis of 2; lambdamax = 355 nm, tau = 50 ms at room temperature. No triplet ESR signals were observed during the photolysis of 2 in 3-methylpentane glass matrix at 77 K, indicating the singlet nature of 1. Theoretical calculations for the parent stannaacetylene suggest that the stannaacetylene is characterized as a SnC triple-bonded compound with a significant contribution of stannylene-(doubly excited)carbene structure.  相似文献   

19.
单一手性烯烃铜(Ⅰ)配位聚合物   总被引:1,自引:0,他引:1  
The solvothermal reaction of CuCl with R-(-)-1-allyl-3-methylpiperazine at 70 ℃ gives one-dimensional chain Cu-coordination polymer through olefin moiety binding to Cu atoms formulated as [Cu(C8H16N2)Cl]. It is interesting to note that through Cu2Cl2 dimer unit 1 results in a supramolecular 3-dimensional coordination polymer. Powdered sample measurement of 1 reveals that 1 is second-harmonic generation (SHG) active compound. Crystal parameters for 1, space group P212121, a=0.763 1(9) nm, b=0.891 0(10) nm, c=1.494 6(17) nm, α=90°, β=90°, γ=90°, V=1.016(2) nm3, Z=2, M=478.44, Dc=1.564 Mg·m-3. CCDC: 650193.  相似文献   

20.
New phosphorescent Pt(II) compounds based on dimesitylboron (BMes(2) )-functionalized 2-phenylpyridyl (ppy) N,C-chelate ligands and an acetylacetonato ancillary ligand have been achieved. We have found that BMes(2) substitution at the 4'-position of the phenyl ring can blue-shift the phosphorescent emission energy of the Pt(II) compound by approximately 50?nm, compared to the 5'-BMes(2) substituted analogue, without substantial loss of luminescent quantum efficiencies. The emission color of the 4'-BMes(2) substituted Pt(II) compound, Pt(Bppy)(acac) (1) can be further tuned by the introduction of a substituent group at the 3'-position of the phenyl ring. A methyl substituent red-shifts the emission energy of 1 by approximately 10?nm whereas a fluoro substituent blue-shifts the emission energy by about 6?nm. Using this strategy, three bright blue-green phosphorescent Pt(II) compounds 1, 2 and 3 with emission energy at 481, 492, and 475?nm and Φ(PL) =0.43, 0.26 and 0.25, respectively, have been achieved. In addition, we have examined the impact of BMes(2) substitution on 3,5-dipyridylbenzene (dpb) N,C,N-chelate Pt(II) compounds by synthesizing compound 4, Pt(Bdpb)Cl, which has a BMes(2) group at the 4'-position of the benzene ring. Compound 4 has a phosphorescent emission band at 485?nm and Φ(PL) =0.70. Highly efficient blue-green electroluminescent (EL) devices with a double-layer structure and compounds 1, 3 or 4 as the phosphorescent dopant have been fabricated. At 100?cd?m(-2) luminance, EL devices based on 1, 3 and 4 with an external quantum efficiency of 4.7, 6.5 and 13.4?%, respectively, have been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号