首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of distinct covalent forms of proteins (the proteome) greatly exceeds the number of proteins predicted by DNA coding capacities owing to directed posttranslational modifications. Enzymes dedicated to such protein modifications include 500 human protein kinases, 150 protein phosphatases, and 500 proteases. The major types of protein covalent modifications, such as phosphorylation, acetylation, glycosylation, methylation, and ubiquitylation, can be classified according to the type of amino acid side chain modified, the category of the modifying enzyme, and the extent of reversibility. Chemical events such as protein splicing, green fluorescent protein maturation, and proteasome autoactivations also represent posttranslational modifications. An understanding of the scope and pattern of the many posttranslational modifications in eukaryotic cells provides insight into the function and dynamics of proteome compositions.  相似文献   

2.
Leaving marks: the number of known posttranslational modifications for lysine has been expanded considerably. In addition to acetylation of side-chain amino functionalities of lysine residues in proteins, crotonylation, succinylation, and malonylation have now been identified as posttranslational modifications in histone and in non-histone proteins.  相似文献   

3.
Rhodopsin is the dim light photosensitive pigment of animals. In this work, we undertook to study the structure of rhodopsin from swine and compare it with bovine and rat rhodopsin. Porcine rhodopsin was analyzed using methodology developed previously for mass spectrometric analysis of integral membrane proteins. Combining efficient protein cleavage and high performance liquid chromatography separation with the sensitivity of mass spectrometry (MS), this technique allows the observation of the full protein map and the posttranslational modifications of the protein in a single experiment. The rhodopsin protein from a single porcine eye was sequenced completely, with the exception of two single-amino acid fragments and one two-amino acid fragment, and the gene sequence reported previously was confirmed. The posttranslational modifications, similar to the ones reported previously for bovine and rat rhodopsin, were also identified. Although porcine rhodopsin has a high degree of homology to bovine and rat rhodopsins and most of their posttranslational modifications are identical, the glycosylation and phosphorylation patterns observed were different. These results show that rhodopsin from a single porcine eye can be characterized completely by MS. This technology opens the possibility of rhodopsin structural and functional studies aided by powerful mass spectrometric analysis, using the fellow eye as an internal control.  相似文献   

4.
Functional in vivo investigation of posttranslational modifications is a problem that a number of analytical techniques are trying to tackle. Below, we briefly discuss the breakthroughs and challenges in placing NMR spectroscopy on the map, as illustrated by a recent report by Selenko et al. (2008).  相似文献   

5.
A new chemical strategy for phosphopeptide profiling is reported in this study. Phosphorylation represents one of the most important classes of posttranslational modifications of proteins. Here we report a generalized strategy that employs solid-phase capture and mass-encoding steps to selectively enrich phosphopeptides from complex mixtures. This method exploits conversion of phosphates into thiols and reactive compounds to selectively isolate products of phosphorylation. Selective isolation of phosphopeptides is achieved with a simple, novel, acid-cleavable, solid-support-bound maleimide reagent. Our chemistry efforts have focused on minimization of linker size and simplification of reagent production with incorporation of common solid-phase peptide synthesis steps. Relative quantitation was demonstrated by modifying phosphopeptides with incorporation of ethanedithiol and propanedithiol. We observed that appropriate normalization is necessary to utilize mass tag strategies for relative quantitation of posttranslational modifications. The utility of solid-phase capture was determined with model phosphopeptides, and the method was demonstrated with enriching phosphopeptides from beta-casein, alpha-casein and ovalbumin. The solid-phase capture and release methods were also demonstrated with unfractionated whole histone protein mixtures to show this compound applicability in real biological samples. The new chemical strategy will ultimately be utilized for high-throughput profiling of phosphorylation and possibly other posttranslational modifications.  相似文献   

6.
Specific labeling of biomolecules with biochemical and biophysical probes is a central element of proteomics research. Here we describe a coumarin-phosphine dye that undergoes activation of coumarin fluorescence upon Staudinger ligation with azides. Since azides can be metabolically incorporated into cellular proteins and oligosaccharides, this dye may be a useful tool for profiling proteins and their posttranslational modifications.  相似文献   

7.
We report a new chemoenzymatic strategy for the rapid and sensitive detection of O-GlcNAc posttranslational modifications. The approach exploits the ability of an engineered mutant of beta-1,4-galactosyltransferase to selectively transfer an unnatural ketone functionality onto O-GlcNAc glycosylated proteins. Once transferred, the ketone moiety serves as a versatile handle for the attachment of biotin, thereby enabling chemiluminescent detection of the modified protein. Importantly, this approach permits the rapid visualization of proteins that are at the limits of detection using traditional methods. Moreover, it bypasses the need for radioactive precursors and captures the glycosylated species without perturbing metabolic pathways. We anticipate that this general chemoenzymatic strategy will have broad application to the study of posttranslational modifications.  相似文献   

8.
Posttranslational modifications of proteins play crucial roles in health and disease by affecting numerous aspects of protein structure, function, stability and sub cellular localization. Yet understanding the effects of these modifications on several of these processes at the molecular level has been hindered by the lack of homogeneously modified proteins obtained via traditional biochemical and molecular biology approaches. Moreover, the preparation of such bioconjugates at a workable level is highly demanding. Recent advances in protein chemistry applying chemical and semisynthetic approaches are becoming increasingly beneficial to overcome these challenges. These methods allow site-specific modifications of a desired protein and afford the product in large quantities for biochemical and structural analyses. In this review, we survey these efforts and their importance in dissecting the role of several posttranslational modifications in various proteins. Several examples are presented where glycosylated, phosphorylated, ubiquitinated, lipidated, acetylated and methylated proteins were prepared.  相似文献   

9.
A typical example of non-enzymatic change of collagen is glycation (the Maillard reaction, formation of advanced glycation end products) resulting from the reaction of sugars with the epsilon-amino group of lysine. Posttranslational non-enzymatic modifications of collagen by sugars were studied. Collagenous tissues were incubated as a test protein separately with both glucose and ribose. The collagen mixture was digested by bacterial collagenase and separated by reversed-phase HPLC (in a Jupiter Proteo 90 A column). The eluate from this HPLC separation was collected as seven fractions and consecutively analysed by CE in a bare fused silica capillary (57/50 cm x 75 mm id) using 100 mM sodium 1-heptanesulfonate in 100 mM phosphate buffer, pH 2.5 (NaH2PO4 adjusted to pH by phosphoric acid). The chromatographic and electromigration behaviour of individual peptides varied considerably. This off-line HPLC-CE coupling made it possible to discover minor changes in the structure of collagen caused by posttranslational modifications. A new HPLC-CE technique for peptide analysis was developed, and applied to the identification of posttranslational modifications in slowly metabolised test proteins.  相似文献   

10.
A method for the fast separation of proteins and identification of their modifications based on the use of monolithic chromatographic media and mass spectrometric techniques is described. This method has been developed and applied to the analysis of malt proteins and its posttranslational modifications (glycation). Glycation, one of the most common forms of posttranslational modifications (PTM), can be detected in both biological and industrial samples. Our attention was focused on the investigations of possible chemical modifications of water-soluble barley proteins during malting process by combination of anion-exchange chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The malt extract was directly fractioned by anion-exchange chromatography using short monolithic columns and a linear gradient from 0 to 700 mM NaCl. Sufficient fractionation was obtained for malt sample, which demonstrates the potential of anion-exchange chromatography on this type of column. Proteins in separated fractions were identified by MALDI-TOF/TOF MS. Our proteomic analysis provided the identification of the major proteins present in the malt that were found to be heterogeneously glycated after malting. One of these proteins: nonspecific lipid transfer protein 1 (LTP1) can be used as a marker for characterization of glycation during malting. This protein and its modifications can be easily determined by the developed method.  相似文献   

11.
Non‐enzymatic posttranslational modifications (nPTMs) affect at least ~30 % of human proteins, but our understanding of their impact on protein structure and function is limited. Studies of nPTMs are difficult because many modifications are not included in common chemical libraries or protein expression systems and should be introduced site‐specifically. Herein, we probed the effect of the nPTM argpyrimidine on the structure and function of human protein Hsp27, which acquires argpyrimidine at residue 188 in vivo. We developed a synthetic approach to an argpyrimidine building block, which we then incorporated at position 188 of Hsp27 through protein semisynthesis. This modification did not affect the protein secondary structure, but perturbed the oligomeric assembly and impaired chaperone activity. Our work demonstrates that protein function can be altered by a single nPTM and opens up a new area of investigation only accessible by methods that allow site‐selective protein modification.  相似文献   

12.
Therapeutic monoclonal antibodies (mAbs), immunoglobulins, have been efficiently used in the treatment of many diseases, such as cancer, inflammatory and cardiovascular diseases, and organ transplantation. mAbs are glycoprotein molecules undergoing posttranslational modifications. Glycosylation is one of the posttranslational modifications. Different glycoforms that are important for maintaining the potency of mAb drugs show various biological activities. Therefore, the profile of the glycans and glycosylation sites should be determined to produce safe, good quality, consistent mAb drugs for human use. For this reason, simple, robust, accurate, and reproducible analytical methods need to be developed. In this article, chromatographic methods for the analysis of the glycoforms on the glycosylation site and the glycans in mAb biopharmaceuticals have been evaluated.  相似文献   

13.
L-lactate dehydrogenase (LDH) converts pyruvate to lactate when oxygen is absent or in short supply, and the enzyme plays a crucial role in cancer metabolism. The functions of many mammalian proteins are modulated by posttranslational modifications (PTMs), and it has been reported that LDH was subjected to several PTMs, including phosphorylation, acetylation, and methylation. In this present work, we characterized the PTMs of LDH from pancreatic ductal adenocarcinoma (PDAC) cells by electrophoresis and mass spectrometry, and identified 13 O-methylated residues from the enzyme. In addition, our qualitative analysis revealed differential methylation of LDH from normal duct cells. The preliminary findings from this study provide important biochemical information toward further understanding of the LDH modifications and their functional significance in pathophysiological processes of pancreatic cancer.  相似文献   

14.
In this article we evaluate methods used to reveal the molecular complexity, which is generated in biological samples by posttranslational modifications (PTM) of proteins. We show how distinct molecular differences on the level of phosphorylation sites in a single protein (ovalbumin) can be resolved with different success using 1D and 2D gel-electrophoresis and reversed-phase liquid chromatography (LC) with monolithic polystyrol-divinylbenzol (PS-DVB) columns for protein separation, and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) for protein identification. Phosphorylation site analysis was performed using enzymatic dephosphorylation in combination with differential peptide mass mapping. Liquid chromatography-MALDI-TOF MS coupling with subsequent on-target tryptic protein digestion turned out to be the fastest method tested but yielded low resolution for the analysis of PTM, whereas 2D gel-electrophoresis, due to its unique capability of resolving highly complex isoform pattern, turned out to be the most suitable method for this purpose. The evaluated methods complement one another and in connection with efficient technologies for differential and quantitative analysis, these approaches have the potential to reveal novel molecular details of protein biomarkers.  相似文献   

15.
Protein arginylation and arginine methylation are two posttranslational modifications of emerging importance that involve Arg residues and their modifications. To test a hypothesis that posttranslationally added arginines can be methylated, we used high-precision mass spectrometry and metabolic labeling to find whether posttranslationally added arginines can serve as methylation sites. We identified?a number of proteins in?vivo, on which posttranslationally added Arg have undergone mono- and dimethylation. This double modification predominantly affects the chromatin-containing nuclear fraction and likely plays an important regulatory role in chromatin-associated proteins. Moreover, inhibition of arginylation and Arg methylation results in?a significant reduction of the nucleus size in cultured cells, suggesting changes in chromatin compaction and nuclear architecture. Our findings suggest?a functional link between protein regulation by arginylation and methylation that affects nuclear structure in?vivo.  相似文献   

16.
Mass spectrometry has proven to be an indispensable tool for protein identification, characterization, and quantification. Among the possible methods in quantitative proteomics, stable isotope labeling by using reductive dimethylation has emerged as a cost-effective, simple, but powerful method able to compete at any level with the present alternatives. In this review, we briefly introduce experimental and software methods for proteome analysis using dimethyl labeling and provide a comprehensive overview of reported applications in the analysis of (1) differential protein expression, (2) posttranslational modifications, and (3) protein interactions.  相似文献   

17.
The depository effects that occur in slowly metabolized proteins (typically glycation) are very difficult to assess, owing to their extremely low concentration in the protein matrix. Collagen accumulates reactive metabolites through reactions that are not regulated by enzymes. A typical example of these non-enzymatic changes is glycation (the Maillard reaction, the formation of advanced glycation end products), resulting from the reaction of the oxo-group of sugars with the epsilon-amino group of lysine and arginine. Collagen samples (type I) as a test protein were incubated separately with glucose, ribose and malondialdehyde. Collagen was fragmented with cyanogen bromide and then digested with trypsin. This peptide digest was separated by CE, CE-MS/MS, and HPLC-MS/MS. An ion trap MS was used and MS conditions were optimized for both methods. These on-line CE-MS/MS and HPLC-MS/MS couplings made it possible to discover specific modifications such as (N(epsilon)-(carboxymethyl)-lysine) in the precise location in the structure of collagen corresponding to posttranslational non-enzymatic modifications. A new CE-MS/MS technique for peptide analysis was developed, and applied in the identification of posttranslational modifications in slowly metabolized test proteins.  相似文献   

18.
19.
The understanding of cellular processes and their pathophysiological alterations requires comprehensive data on the abundance, distribution, modification, and interaction of all cellular components. On the one hand, artificially introduced fluorescent fusion proteins provide information about their distribution and dynamics in living cells but not about endogenous factors. On the other hand, antibodies can detect endogenous proteins, posttranslational modifications, and other cellular components but mostly in fixed and permeabilized cells. Here we highlight a new technology based on the antigen-binding domain of heavy-chain antibodies (VHH) from Camelidae. These extremely stable VHH domains can be produced in bacteria, coupled to matrices, and used for affinity purification and proteome studies. Alternatively, these VHH domains can be fused with fluorescent proteins and expressed in living cells. These fluorescent antigen-binding proteins called “chromobodies” can be used to detect and trace proteins and other cellular components in vivo. Chromobodies can, in principle, detect any antigenic structure, including posttranslational modifications, and thereby dramatically expand the quality and quantity of information that can be gathered in high-content analysis. Depending on the epitope chosen, chromobodies can also be used to modulate protein function in living cells.  相似文献   

20.
The green fluorescent protein (GFP) creates a fluorophore out of three sequential amino acids by promoting spontaneous posttranslational modifications. Here, we use high-resolution crystallography to characterize GFP variants that not only undergo peptide backbone cyclization but additional denaturation-induced peptide backbone fragmentation, native peptide hydrolysis, and decarboxylation reactions. Our analyses indicate that architectural features that favor GFP peptide cyclization also drive peptide hydrolysis. These results are relevant for the maturation pathways of GFP homologues, such as the kindling fluorescent protein and the Kaede protein, which use backbone cleavage to red-shift the spectral properties of their chromophores. We further propose a photochemical mechanism for the decarboxylation reaction, supporting a role for the GFP protein environment in facilitating radical formation and one-electron chemistry, which may be important in activating oxygen for the oxidation step of chromophore biosynthesis. Together, our results characterize GFP posttranslational modification chemistry with implications for the energetic landscape of backbone cyclization and subsequent reactions, and for the rational design of predetermined spontaneous backbone cyclization and cleavage reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号