首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Three α-l-ribofuranosyl analogues of RNA nucleotides (α-l-RNA analogues) have been synthesized and incorporated into oligonucleotides using the phosphoramide approach on an automated DNA synthesizer. The 4′-C-hydroxymethyl-α-l-ribofuranosyl thymine monomer was furthermore synthesized. Relative to the unmodified duplexes, incorporation of a single α-l-RNA monomer into a DNA strand leads to reduced thermal stability of duplexes with DNA complements but unchanged thermal stability of duplexes with RNA complements, whereas incorporation of more than one α-l-RNA monomer lead to moderately decreased thermal stability also of duplexes with RNA complements. Efficient hybridization with an RNA complement and no melting transition with a DNA complement were observed with stereoregular chimeric oligonucleotides composed of a mixture of α-l-RNA and affinity enhancing α-l-LNA monomers (α-l-ribo-configured locked nucleic acid). Furthermore, duplexes formed between oligodeoxynucleotides containing an α-l-RNA monomer and complementary RNA were good substrates for Escherichia coli RNase H. RNA-selective hybridization was also achieved by the incorporation of 1-(4-C-hydroxymethyl-β-d-lyxofuranosyl)thymine monomers into a DNA strand, whereas stable duplexes were formed with both complementary DNA and RNA when these monomers were incorporated into an RNA strand.  相似文献   

2.
Antisense oligonucleotides and siRNAs are potential therapeutic agents and their chemical modifications play an important role to improve the properties and activities of oligonucleotides. Isonucleoside is a type of nucleoside analogue, in which the nucleobase is moved from C-1 to other positions of ribose. In this report, a novel isonucleoside containing a 5'-CH(2)-extended chain at the sugar moiety was synthesized, thus isoadenosine and isothymidine were incorporated into a DNA single strand and siRNA. It was found that isonucleoside modified oligonucleotides can form stable double helical structures with their complementary DNA and RNA and the stability towards nuclease and ability to activate RNase H are more promising compared with the unmodified, natural analogues. In siRNA, passenger strand modified with isonucleoside () at 3' or 5' terminal can retain the silencing activity and minimize the passenger strand specific off-target effect.  相似文献   

3.
Peptide nucleic acids (PNA) and PNA–DNA chimeras carrying thiol groups were used for surface functionalization of Au nanoparticles. Conjugation of PNA to citrate‐stabilized Au nanoparticles destabilized the nanoparticles causing them to precipitate. Addition of a tail of glutamic acid to the PNA prevented destabilization of the nanoparticles but resulted in loss of interaction with complementary sequences. Importantly, PNA–DNA chimeras gave stable conjugates with Au nanoparticles. The hybridization and melting properties of complexes formed from chimera–nanoparticle conjugates and oligonucleotide–nanoparticle conjugates are described for the first time. Similar to oligonucleotide–nanoparticle conjugates, conjugates with PNA–DNA chimeras gave sharper and more‐defined melting profiles than those obtained with unmodified oligonucleotides. In addition, mismatch discrimination was found to be more efficient than with unmodified oligonucleotides.  相似文献   

4.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

5.
The synthesis of nucleoside analogues with a conformationally restricted sugar moiety is of great interest. The present research describes the synthesis of BNA (bridged nucleic acid) monomers 1 and 2 bearing a 4,7-dioxabicyclo[4.3.0]nonane skeleton and a methoxy group at the C2' position. Conformational analysis showed that the sugar moiety of these monomers is restricted in a typical S-type conformation. It was difficult to synthesize the phosphoramidite derivative of the ribo-type monomer 1, while the phosphoramidite of the arabino-type monomer 2 was successfully prepared and incorporated into oligodeoxynucleotides (ODNs). The hybridization ability of the obtained ODN derivatives containing 2 with complementary strands was evaluated by melting temperature (T(m)) measurements. As a result, the ODN derivatives hybridized with DNA and RNA complements in a sequence-selective manner, though the stability of the duplexes was lower than that of the corresponding natural DNA/DNA or DNA/RNA duplex.  相似文献   

6.
The synthesis and evaluation of a range of piperazino‐derivatized diastereomeric O2′,C3′‐linked bicyclic nucleotides are described. A new and optimized protocol is presented for the synthesis of the bicyclic scaffold on which the piperazino moiety is appended. At low salt concentration, the C2″‐S‐configured piperazino‐modified oligonucleotides display significantly enhanced hybridization affinity toward complementary DNA and RNA targets relative to the unmodified oligonucleotide control, whereas no melting transition is observed for hybrids formed with the C2″‐R‐configured piperazino‐modified oligonucleotides. Upon derivatization of the piperazino moiety with a 1‐pyrenebutanoyl group, all modified oligonucleotides display strong DNA binding and profound DNA hybridization selectivity.  相似文献   

7.
BACKGROUND: Synthetic nucleic acid analogues with a conformationally restricted sugar-phosphate backbone are widely used in antisense strategies for biomedical and biochemical applications. The modified backbone protects the oligonucleotides against degradation within the living cell, which allows them to form stable duplexes with sequences in target mRNAs with the aim of arresting their translation. The biologically most active antisense oligonucleotides also trigger cleavage of the target RNA through activation of endogenous RNase H. Systematic studies of synthetic oligonucleotides have also been conducted to delineate the origin of the chirality of DNA and RNA that are both composed of D-nucleosides. RESULTS: Hexitol nucleic acids (HNA) are the first example of oligonucleotides with a six-membered carbohydrate moiety that can bind strongly and selectively to complementary RNA oligomers. We present the first high resolution nuclear magnetic resonance structure of a HNA oligomer bound to a complementary RNA strand. The HNA-RNA complex forms an anti-parallel heteroduplex and adopts a helical conformation that belongs to the A-type family. Possibly, due to the rigidity of the rigid chair conformation of the six-membered ring both the HNA and RNA strand in the duplex are well defined. The observed absence of end-fraying effects also indicate a reduced conformational flexibility of the HNA-RNA duplex compared to canonical dsRNA or an RNA-DNA duplex. CONCLUSIONS: The P-P distance across the minor groove, which is close to A-form, and the rigid conformation of the HNA-RNA complex, explain its resistance towards degradation by Rnase H. The A-form character of the HNA-RNA duplex and the reduced flexibility of the HNA strand is possibly responsible for the stereoselectivity of HNA templates in non-enzymatic replication of oligonucleotides, supporting the theory that nucleosides with six-membered rings could have existed at some stage in molecular evolution.  相似文献   

8.
Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au-S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridization ability. We herein report a novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications. We have demonstrated that poly adenine (polyA) can serve as an effective anchoring block for preferential binding with the AuNP surface, and the appended recognition block adopts an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can also be systematically modulated by adjusting the length of the polyA block. Significantly, this diblock oligonucleotide strategy results in DNA-AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA sensor.  相似文献   

9.
To synthesize oligonucleotides containing 2'-O-phosphate groups, four kinds of ribonucleoside 3'-phosphoramidite building blocks 6a-d having the bis(2-cyano-1,1-dimethylethoxy)thiophosphoryl (BCMETP) group were prepared according to our previous phosphorylation procedure. These phosphoramidite units 6a-d were not contaminated with 3'-regioisomers and were successfully applied to solid-phase synthesis to give oligodeoxyuridylates 15, 16 and oligouridylates 21, 22. Self-complementary Drew-Dickerson DNA 12mers 24-28 replaced by a 2'-O-phosphorylated ribonucleotide at various positions were similarly synthesized. In these syntheses, it turned out that KI(3) was the most effective reagent for oxidative desulfurization of the initially generated thiophosphate group to the phosphate group on polymer supports. Without using this conversion step, a tridecadeoxyuridylate 17 incorporating a 2'-O-thiophosphorylated uridine derivative was also synthesized. To investigate the effect of the 2'-phosphate group on the thermal stability and 3D-structure of DNA(RNA) duplexes, T(m) measurement of the self-complementary oligonucleotides obtained and MD simulation of heptamer duplexes 33-36 were carried out. According to these analyses, it was suggested that the nucleoside ribose moiety phosphorylated at the 2'-hydroxyl function predominantly preferred C2'-endo to C3'-endo conformation in DNA duplexes so that it did not significantly affect the stability of the DNA duplex. On the other hand, the 2'-modified ribose moiety was expelled to give a C3'-endo conformation in RNA duplexes so that the RNA duplexes were extremely destabilized.  相似文献   

10.
Convenient chemical synthesis and incorporation of dithymidine and thymidine-cytidine dimer blocks connected with a five-atom amide linker N3'-CO-CH2-S-CH2 into oligonucleotides (ONs) are reported. The UV-Tm experiments for binding affinities of these mixed backbone ONs with complementary DNA and RNA sequences revealed important results such as significantly higher RNA-binding selectivity as compared with complementary DNA. NMR studies of the dimer blocks suggested a marginal increase in the N-type sugar conformations over that of the native DNA.  相似文献   

11.
In this paper, the application of curcumin (CU) as a non-toxic electrochemical DNA hybridization indicator was described. Hybridization investigations on a pencil graphite electrode surface as a transducer using oligonucleotides containing only one base type, including poly A, poly T, poly C, and poly G as probe and as related complementary/non-complementary sequences, showed that CU has no specific interaction with each of the oligonucleotides of DNA. Furthermore, results showed good interaction between CU and the hybridized form of oligonucleotides; thus, the extent of hybridization was evaluated based on the difference between differential pulse voltammetry (DPV) signals of CU accumulated on the probe-pencil graphite electrode (PGE) and CU accumulated on the probe-target-PGE. Then, the developed biosensor was successfully applied for the detection of short sequences of human interleukin-2 (hIL-2) gene as a model. A hybridization experiment with non-complementary oligonucleotide showed that the suggested DNA sensor responds selectively to the target. At optimized conditions, two linear ranges were obtained for hIL-2 gene, first from 50 to 1000 pM and second from 0.01 to 1 μM with a detection limit of 12 pM. 7.0) containing 20 mM NaCl.  相似文献   

12.
Yi Liang  Guo-Li Shen 《Talanta》2007,72(2):443-449
A novel, highly selective DNA hybridization assay has been developed based on surface-enhanced Raman scattering (SERS) for DNA sequences related to HIV. This strategy employs the Ag/SiO2 core-shell nanoparticle-based Raman tags and the amino group modified silica-coated magnetic nanoparticles as immobilization matrix and separation tool. The hybridization reaction was performed between Raman tags functionalized with 3′-amino-labeled oligonucleotides as detection probes and the amino group modified silica-coated magnetic nanoparticles functionalized with 5′-amino-labeled oligonucleotides as capture probes. The Raman spectra of Raman tags can be used to monitor the presence of target oligonucleotides. The utilization of silica-coated magnetic nanoparticles not only avoided time-consuming washing, but also amplified the signal of hybridization assay. Additionally, the results of control experiments show that no or very low signal would be obtained if the hybridization assay is conducted in the presence of DNA sequences other than complementary oligonucleotides related to HIV gene such as non-complementary oligonucleotides, four bases mismatch oligonucleotides, two bases mismatch oligonucleotides and even single base mismatch oligonucleotides. It was demonstrated that the method developed in this work has high selectivity and sensitivity for DNA detection related to HIV gene.  相似文献   

13.
Oligodeoxyribonucleoside boranophosphates (BH3-ODNs), containing four kinds of nucleobases, were synthesized by the solid-phase boranophosphotriester method. The 2'-deoxyribonucleoside 3'-boranophosphate monomers having 2-cyanoethyl (CE) groups as the phosphorus protecting groups were synthesized in good yields. A new condensing reagent, 1,3-dimethyl-2-(3-nitro-1,2,4-triazol-1-yl)-2-pyrrolidin-1-yl-1,3,2-diazaphospholidinium hexafluorophosphate, was found to be highly effective for the condensation reaction on the solid support. We also found that 1,8-bis(N,N-dimethylamino)naphthalene could accelerate the condensation reaction without causing beta-elimination of the CE groups from the boranophosphate triesters. The internucleotidic CE groups were selectively removed by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under anhydrous conditions. The acetylation of the terminal 5'-hydroxy group was found to be effective to suppress the decomposition of the BH3-ODNs during the DBU treatment on the solid support. Under optimized conditions for the solid-phase synthesis and the deprotection reactions, BH3-ODNs (4mers and 12mers) containing four kinds of nucleobases were synthesized in good yields. The hybridization properties of the BH3-ODN 12mers with the complementary native DNAs and RNAs were determined by the thermal denaturing studies. In contrast to the low thermal melting (Tm) value of the duplex composed of T((PB)T)11 and native dA12 (12.8 degrees C), the duplex consisting of d(C(PB)A(PB)G(PB)T)3 and d(ACTG)3 showed a higher Tm value (44.7 degrees C) under high-salt conditions. Furthermore, d(C(PB)A(PB)G(PB)T)3 formed a more stable duplex with the complementary RNA, r(ACUG)3 with a Tm value of 50.5 degrees C. Thus, we first demonstrated that the binding affinity of BH3-ODN to a complementary DNA or RNA is dramatically increased, owing to the inclusion of the four kinds of nucleobases.  相似文献   

14.
15.
We have demonstrated that a new type of circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON) with two closed nucleotide or alkyl loop structures (hexa‐ethylene glycol) inhibits influenza virus A replication in MDCK cells. The enzymatic synthesis of circular dumbbell RNA/DNA chimeric oligonucleotides was achieved by enzymatically ligating a self‐complementary phosphorylated oligonucleotide with T4‐RNA ligase. The CDRDON‐Al, with two closed alkyl loop structures, showed higher nuclease resistance, hybridization, and cellular uptake than the anti‐S‐ODN and the CDRDON, with two closed nucleotide hairpin‐loop structures. The circular dumbbell RNA/DNA chimeric oligonucleotide (CDRDON‐Al‐PB2‐as), containing an AUG initiation‐codon sequence as the target of PB2, showed highly inhibitory effects on influenza A virus RNA expression. The limited toxicity of unmodified phosphodiester oligonucleotides and the sequence‐specific binding to target mRNA indicate that circular dumbbell RNA/DNA chimeric phosphodiester oligonucleotides can be used with intact cells, and may prevent viral replication in culture.  相似文献   

16.
Digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences were introduced into nonradioactive fingerprint analysis of plant and fungal DNA. The fragment patterns, obtained by blot hybridization of TaqI-restricted DNA from chickpea (Cicer arietinum) and its fungal pathogen Ascochyta rabiei with digoxigenated probes and either a colorigenic or a chemiluminescent detection method, were compared to those obtained with 32P-labeled probes. In combination with alkaline phosphatase and its chemiluminescent substrate 3-(2'-spiroadamantane)-4-methoxy-4-(3"-phosphoryloxy)phenyl- 1,2-dioxetane (AMPPD) digoxigenated oligonucleotides yielded clear-cut fingerprints with high signal-to-background ratios within several minutes of exposure to X-ray films. The chemiluminescence reaction remained stable for at least two weeks. A comparison of banding patterns obtained by radioactive versus digoxigenin-based hybridization and detection techniques revealed substantial differences in the relative signal intensities of bands. Both nonradioactive techniques show a tendency to "equalize" band intensity differences. Whereas 32P-labeled oligonucleotides are also applicable to in situ hybridization with DNA immobilized in dried agarose gels, gel hybridization did not work efficiently with digoxigenated probes and either substrate.  相似文献   

17.
A nucleoside with two nucleobases, a so-called double-headed nucleoside, 5'(S)-C-(thymine-1-ylmethyl)thymidine 3, is synthesised and incorporated into oligonucleotides. The additional nucleobase is hereby positioned in the minor groove of the duplexes, which are formed with complementary DNA and RNA-sequences. Slight thermal destabilisation of these duplexes as compared to unmodified duplexes is observed. With other target sequences forming bulged duplexes or three-way junctions, no additional influence of the additional base on the thermal stability is observed. On the other hand, a base-base stacking interaction and subsequent stabilisation is observed when two double-headed nucleotide moieties are positioned in two complementary DNA-sequences forming a DNA-zipper motif.  相似文献   

18.
We report the design and synthesis of 2'-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorine atom was accomplished using nonafluorobutanesulfonyl fluoride, and the cyclohexenyl ring system was assembled by means of a palladium-catalyzed Ferrier rearrangement. Installation of the nucleobase was carried out under Mitsunobu conditions followed by standard protecting group manipulations to provide the desired pyrimidine phosphoramidites. Biophysical evaluation indicated that F-CeNA shows behavior similar to that of a 2'-modified nucleotide, and duplexes with RNA showed slightly lower duplex thermostability as compared to that of the more rigid 3'-fluoro hexitol nucleic acid (FHNA). However, F-CeNA modified oligonucleotides were significantly more stable against digestion by snake venom phosphodiesterases (SVPD) as compared to unmodified DNA, 2'-fluoro RNA (FRNA), 2'-methoxyethyl RNA (MOE), and FHNA modified oligonucleotides. Examination of crystal structures of a modified DNA heptamer duplex d(GCG)-T*-d(GCG):d(CGCACGC) by X-ray crystallography indicated that the cyclohexenyl ring system exhibits both the (3)H(2) and (2)H(3) conformations, similar to the C3'-endo/C2'-endo conformation equilibrium seen in natural furanose nucleosides. In the (2)H(3) conformation, the equatorial fluorine engages in a relatively close contact with C8 (2.94 ?) of the 3'-adjacent dG nucleotide that may represent a pseudo hydrogen bond. In contrast, the cyclohexenyl ring of F-CeNA was found to exist exclusively in the (3)H(2) (C3'-endo like) conformation in the crystal structure of the modified A-form DNA decamer duplex [d(GCGTA)-T*-d(ACGC)](2.) In an animal experiment, a 16-mer F-CeNA gapmer ASO showed similar RNA affinity but significantly improved activity compared to that of a sequence matched MOE ASO, thus establishing F-CeNA as a useful modification for antisense applications.  相似文献   

19.
By automated synthesis, we prepared hybrid oligonucleotides consisting of covalently linked RNA and p‐DNA sequences (p‐DNA=3′‐deoxyribopyranose (4′→2′)‐oligonucleotides) (see Table 1). The pairing properties of corresponding hybrid duplexes, formed from fully complementary single strands were investigated. An uninterrupted ππ‐stacking at the p‐DNA/RNA interface and cooperative pairing between the two systems was achieved by connecting them via a 4′‐p‐DNA‐2′→5′‐RNA‐3′ and 5′‐RNA‐2′→4′‐p‐DNA‐2′ phosphodiester linkage, respectively (see Fig. 4). The RNA 2′‐phosphoramidites 9 – 12 , required for the formation of the RNA‐2′→4′‐p‐DNA phosphodiester linkage were synthesized from the corresponding, 3′‐O‐tom‐protected ribonucleosides (tom=[(triisopropylsilyl)oxy]methyl; Scheme 1). Analogues of the flavin mononucleotide (=FMN) binding aptamer 22 and the hammerhead ribozyme 25 were prepared. Each of these analogues consisted of two p‐DNA/RNA hybrid single strands with complementary p‐DNA sequences, designed to substitute stem/loop and stem motifs within the parent compounds. By comparative binding and cleavage studies, it was found that mixing of the two complementary p‐DNA/RNA hybrid sequences resulted in the formation of the fully functional analogues 23 ⋅ 24 and 27 ⋅ 28 of the FMN‐binding aptamer and of the hammerhead ribozyme, respectively.  相似文献   

20.
The performance of DNA microarrays strongly depends on their surface properties. Furthermore, the immobilization method of the capture molecules is of importance for the efficiency of the microarray in terms of sensitivity and specificity. This work describes the immobilization of single-stranded capture oligonucleotides by UV cross-linking on silanated (amino and epoxy) glass surfaces. Thereby we used amino (NH2) and poly thymine/poly cytosine modifications of the capture sequences as well as unmodified capture molecules. The results were compared to UV cross-linking of the same DNA oligonucleotides on unmodified glass surfaces. Immobilization and hybridization efficiency was demonstrated by fluorescence and enzyme-induced deposition of silver nanoparticles. We found out that single-stranded DNA molecules do not require a special modification to immobilize them by UV cross-linking on epoxy- or amino-modified glass surfaces. However, higher binding rates can be achieved when using amino-modified oligonucleotides on an epoxy surface. The limit of detection for the used settings was 5 pM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号