首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of a water vapor admixture in helium, nitrogen, and carbon dioxide on capacity coefficients of C3−C5 alcohols and pyridine during chromatography process in capillary columns with polar (PEG-20M) and nonpolar (SE-30) stationary phases was studied. The introduction of a water admixture into the carrier gas, increases the capacity coefficient of polar organic compounds on the capillary column with PEG-20M and has almost no effect on this value in the case of SE-30. The change in retention of polar organic compounds on the capillary column with the PEG-20M polar phase occurs due to a change in the properties of the stationary phase when it adsorbs water from the mobile phase. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2258–2261, November, 1998.  相似文献   

2.
N. Wu  Q. Tang  Y. Shen  M. L. Lee 《Chromatographia》1999,49(7-8):431-435
Summary In this paper, practical considerations of column efficiency, separation speed, thermal stability, and column polarity of capillary columns packed with polybutadiene-coated zirconia were investigated under solvating gas chromatography (SGC) conditions using carbon dioxide as mobile phase. When compared with results obtained from conventional porous octadecyl obtained from conventional porous octadecyl bonded silica (ODS) particles, PBD-zirconia particles produced greater change in mobile phase linear velocity with pressure than conventional ODS particles under the same conditions. The maximum plate number per second (Nt) obtained with a 30 cm PBD-zirconia column was approximately 1.5 times higher than that obtained with an ODS column at 100 °C. Therefore, the PBD-zirconia phase is more suitable for fast separations than conventional ODS particles in SGC. Maximum plate numbers per meter of 76,900 and 63,300 were obtained using a 57 cm×250 μm i.d. fused silica capillary column packed with 3 μm PBD-zirconia at 50 °C and 100 °C, respectively. The PBD-zirconia phase was stable at temperatures up to 320 °C under SGC conditions using carbon dioxide as mobile phase. Polarizable aromatic compounds and low molecular weight ketones and aldehydes were eluted with symmetrical peaks from a 10 cm column packed with 3 μm PBD-zirconia. Zirconia phases with greater inertness are required for the analysis of more polar compounds by SGC.  相似文献   

3.
A tandem-column method using Chiralpak AD-H and Chiralcel OD-H columns was achieved for baseline separation of a mixture of chiral pharmaceutical compounds (i.e., four stereoisomers) via supercritical fluid chromatography (SFC) with a mobile phase consisting of 90% liquid carbon dioxide and 10% ethanol:isopropanol (50:50 v/v). On the contrary, this mixture (mixture A) could not be baseline separated by SFC conditions explored with individual Chiralpak AD-H and Chiralcel OD-H columns. The effects of various mobile phases on elution order, capacity factor, selectivity, and resolution were determined with mixture A on the individual aforementioned columns to develop the tandem-column method.  相似文献   

4.
The retention behavior of a set of polar peptides separated on a silica hydride stationary phase was examined with a capillary HPLC system coupled to ESI‐MS detection. The mobile phases consisted of formic acid or acetic acid/acetonitrile/water mixtures with the acetonitrile content ranging from 5 to 80% v/v. The effects on peptide retention of these two acidic buffer additives and their concentrations in the mobile phase were systematically investigated. Strong retention of the peptides on the silica hydride phase was observed with relatively high‐organic low‐aqueous mobile phases (i.e. under aqueous normal‐phase conditions). However, when low concentrations of acetic acid were employed as the buffer additive, strong retention of the peptides was also observed even when high aqueous content mobile phases were employed. This unique feature of the stationary phase therefore provides an opportunity for chromatographic analysis of polar peptides with water‐rich eluents, a feature usually not feasible with traditional RP sorbents, and thus under conditions more compatible with analytical green chemistry criteria. In addition, both isocratic and gradient elution procedures can be employed to optimize peptide separations with excellent reproducibility and resolution under these high aqueous mobile phase conditions with this silica hydride stationary phase.  相似文献   

5.
Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) have been separated by supercritical fluid chromatography coupled with evaporative light scattering and mass spectrometric detection. Four different silica based stationary phases were investigated: diol, cyanopropyl, 2-ethylpyridine, and 4-ethylpyridine. A gradient mobile phase of pressurized carbon dioxide modified with methanol was employed. The individual effect of basic (isopropylamine), acidic (trifluoroacetic acid), and ionic (ammonium acetate) additives incorporated into the primary modifier on the separation of these four lipids from the four stationary phases was investigated. No additive was required to effect the elution of PC and PE (which differed only in polar head group) from any of the four phases. When the two ethylpyridine phases were used, near baseline resolution of two species in each lipid case that differed in fatty acid content were seen. PS and PI could be successfully eluted from each phase when isopropylamine was added to the mobile phase, although the PS peak was always weak and very broad. Ammonium acetate was a more effective additive for phospholipid separation than trifluoroacetic acid. All chromatographic separations were reproducible and required less than 15 min.  相似文献   

6.
Retention and separation of achiral compounds in supercritical fluid chromatography (SFC) depend on numerous parameters: some of these parameters are identical to those encountered in HPLC, such as the mobile phase polarity, while others are specific to SFC, as the density changes of the fluid, due to temperature and/or pressure variations. Additional effects are also related to the fluid compressibility, leading to unusual retention changes in SFC, for instance when flow rate or column length is varied. These additional effects can be minimised by working at lower temperatures in the subcritical domain, simplifying the understanding of retention behaviours. In these subcritical conditions, varied modifiers can be mixed to carbon dioxide, from hexane to methanol, allowing tuning the mobile phase polarity. With nonpolar modifiers, polar stationary phases are classically used. These chromatographic conditions are close to the ones of normal-phase LC. The addition of polar modifiers such as methanol or ACN increases the mobile phase polarity, allowing working with less polar stationary phases. In this case, despite the absence of water, retention behaviours generally follow the rules of RP LC. Moreover, because identical mobile phases can be used with all stationary phase types, from polar silica to nonpolar C18-bonded silica, the classical domains, RP and normal-phase, are easily brought together in SFC. A unified classification method based on the solvation parameter model is proposed to compare the stationary phase properties used with the same subcritical mobile phase.  相似文献   

7.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.  相似文献   

8.
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.  相似文献   

9.
A direct sample injection technique was developed for supercritical fluid chromatography in a packed capillary column, with carbon dioxide as mobile phase and a flame ionization detector. The method allowed solutions, neat liquids, and even solids to be introduced as samples. Also, extraction with supercritical carbon dioxide was combined with this method to separate polymer additives.  相似文献   

10.
Summary Evaporative light scattering detectors can be used to detect organic substances without chromophoric groups in packed column supercritical fluid chromatography (SFC). A detector of this type has been used to detect squalane and glucose after SFC with various packed columns and binary mobile phases. In this study, the amount of organic modifier in carbon dioxide/modifier mixtures was varied. The results give further insight into the mechanisms that influence retention behaviour in packed column separations with super- and subcritical mobile phases. Squalane is an ideal non-polar test solute which shows long retention times on non-polar columns while its elution can be accelerated by non-polar modifiers in carbon dioxide. Glucose is an extremely polar solute containing hydroxyl groups. Elution of this sugar can be improved with polar modifiers. Column packings with polar end groups lead to high capacity ratios and long retention times for glucose. Most columns used in this study contained silica-based packing materials. For purposes of comparison, a polymeric packing (HEMA RP-18) was also employed.  相似文献   

11.
Summary The application of capillary supercritical fluid chromatography (SFC) to the analysis of a middle distillate fuel is described. Small diameter (50m i.d.) fused-silica capillary columns coated with crosslinked 50% phenyl polymethylphenyl siloxane provided high separation efficiency and good compatibility with flame ionization detection. High resolution separations of the chemical class fractions obtained by adsorption chromatography on alumina were obtained using carbon dioxide as the supercritical mobile phase and simple pressure programming techniques. In addition to the less polar fuel components, supercritical carbon dioxide allowed chromatography of the nitrogen-containing polycyclic aromatic hydrocarbon fraction and the hydroxylated polycyclic aromatic materials.  相似文献   

12.
The supercritical fluid chromatography of intact aliphatic amines with different columns is described. One group of amines was based on N,N-dimethyl-n-octylamine and related primary and secondary amines, and the other on the amino alcohol metoprolol and several of its analogues. Columns with three different phases were investigated, one non-polar coated with 5% phenyl methyl polysiloxane and two more polar with 25% cyanopropyl methylphenyl polysiloxane and Carbowax 20M. Generally, equal molar amounts were injected under splitless conditions and the peak symmetry was recorded. The system with the non-polar silicone phase was more inert, followed by the wax-phase column. The cyanopropyl column gave severe peak tailing although it was loaded with five times more of the amines than the other columns. The selectivity was investigated and was found higher with the two polar columns. Both showed a marked increase in the retention of amines with free hydrogens. With nitrous oxide the selectivity was almost the same as that with carbon dioxide as mobile phase. The nature of the flame ionization detector changed, however, giving a negative baseline drift on pressure programming. An interesting conclusion is that the amines are chromatographed as such with carbon dioxide as the mobile phase.  相似文献   

13.
Summary Mixed mobile phase delivery for CSFC is served by a system previously designed for packed column SFC, where a back-pressure regulator controls pressure programming. Piston pumps deliver separate flows of carbon dioxide and modifier (2-propanol). The on-line mixed phase with the injected sample is split to the capillary column. Compared to a commercially available CSFC instrument the system shows no significant differences in resolution. Applications show the advantages of using modifiers in CSFC, such as separations of polar, ionic and high molecular weight compounds, influences on selectivity and shorter retention times.  相似文献   

14.
Xenon is compared to carbon dioxide as a mobile phase for super critical fluid chromatography/Fourier transform infrared spectrometry. The study showed xenon to be comparable to carbon dioxide in terms of resulting chromatography for non-polar analytes. Xenon was confirmed to be a very poor mobile phase, however, for polar analytes. It was determined that small wavenumber shifts in the infrared spectra of probe analytes occurred as either the density or temperature of the mobile phase was increased. The degree of these shifts was often similar for xenon and carbon dioxide. Analyte spectra for five different compounds were produced in both super critical xenon and carbon dioxide and compared to condensed phase and vapor phase library spectra. In all cases, carbon dioxide spectra were readily matched to their corresponding vapor phase spectra, despite having blanked portions of the spectrum due to carbon dioxide infrared absorption. Xenon produced technically superior spectra without such blanked regions, but at a much higher economical cost than carbon dioxide and with no real improvement in terms of library matching.  相似文献   

15.
An empirical relationship was derived which relates properties of the mobile phase modifier to the chiral selectivity factor for a given analyte/chiral selector combination. Using carbon dioxide and heptane-based mobile phases, the effect of various mobile phase modifiers on Pirkle-type stationary phases may be accurately modeled using a two-parameter equation. Similar results are obtained using cellulosic stationary phases with carbon dioxide-based mobile phases. Modeling separations performed using heptane-based mobile phases with cellulosic stationary phases were not successful. The predictive ability of this modeling approach was demonstrated using novel modifiers and chiral analytes.  相似文献   

16.
A comparative study of chromatographic properties of different supercritical eluents has been performed by considering the retention at equal density or at equal free volume for different mobile phases. At equal density, the temperature dependence of the capacity ratios of aromatic hydrocarbons is the same for different alkane mobile phases, whereas significant deviations are observed when carbon dioxide is employed as the mobile phase. At equal free volume, a comparison of the capacity ratios measured in carbon dioxide and in alkane eluents showed a pronounced similarity for the different mobile phases when the free volume was low, i.e., at high densities. With increasing free volume, the chemical differences of the alkanes on the one hand and carbon dioxide on the other become more apparent in their elution behavior. Furthermore, it is demonstrated that the free volume can also be used as a reference basis for the data of solvatochromic shift experiments.  相似文献   

17.
This work aims to evaluate for the enantiomeric separations of three agrochemical toxins: haloxyfop-methyl, fenoxaprop-p-ethyl and indoxacarb on crystalline degradation products-chiral stationary phase (CDP-CSP) of high-performance liquid chromatography (HPLC) under normal and polar organic phases. In the normal phase, the mobile phase was n-hexane with alcohols including methanol and isopropanol as polar modifiers. In the polar organic phase mode, the mobile phase was methanol with different percentages of triethylammunium acetate. The influence of flow rate (0.3-0.9 mL/min), analyte concentration and silica gel particle sizes (10, 15 and 30 microm) was investigated. This new chiral stationary phase showed excellent stereoselectivity for the two enantiomers of haloxyfop-methyl and fenoxaprop-p-ethyl and chiral recognition for indoxacarb under normal-phase mode. However, under polar organic phase, only indoxacarb was separated (alpha < 1.5). The chromatographic results were compared with commercial chiral columns.  相似文献   

18.
Chromatographic systems with a silica sorbent and mobile phases containing dimethyl sulfoxide have been studied. It has been established that the substitution of isopropanol by dimethyl sulfoxide in binary eluents results in a specific selectivity of the chromatographic system and shows an improvement of the peak shape for the solutes under study. When mobile phases consisting of hexane, isopropanol and dimethyl sulfoxide (solvents with a limited mutual solubility) are used, changes in retention characteristics and peak symmetry are caused by a transition from adsorption to partition sorption mechanism. The stationary liquid phase is generated dynamically in the pores of silica, even in the mobile phases not saturated with a polar component. If the phase ratio of the column reaches 0.1, partition dominates over adsorption and such mixed partition-adsorption (MPA) systems show very good peak symmetry for the solutes under study. The investigation has shown that dimethyl sulfoxide-containing MPA systems are applicable in analytical practice.  相似文献   

19.
The effect of mobile phase modifier and additive on the chromatographic properties of various small polypeptides was explored under subcritical conditions. A polymeric column was used to separate various enkephalin analogs, bradykinin, and oxytocin using a carbon dioxide-based mobile phase with either an ethanol or a 2-methoxyethanol modifier. The role of the modifier was found to be secondary to that of the mobile phase additive. As progressively stronger acidic mobile phase additives were used, the peak profiles of the various polypeptides improved and retention decreased. Heptadecafluorooctanesulfonic acid was found to be the most useful additive for these types of solutes under near-critical conditions, while the potassium salt of heptadecafluorooctanesulfonic acid failed to elute any of the polypeptides. At low temperatures, pressure gradients with a carbon dioxide/ethanol/heptadecafluorooctanesulfonic acid ternary mobile phase produced reasonably good peak profiles with the polymeric column.  相似文献   

20.
介绍了β-环糊精的基本性质,综述了β-环糊精及其衍生物作为流动相添加剂在高效液相色谱和高效毛细管电泳手性分离中的应用,并探讨了其作为手性流动相添加剂的特点.指出β-环糊精是良好的手性识别体,不仅可作为色谱手性固定相,还可作为流动相添加剂,用于手性对映体的拆分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号