首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A series of conjugated materials based on oligomers of the para-phenylene type and oligothiophenes was prepared, and their phosphorescence spectra were recorded at 77 K using a pulsed flash-lamp as a light source and gated detection. The triplet energies of the oligomers were estimated and correlated with their chemical structure. It was found that simple changes in the building block sequence in the thiophene-containing oligomers allowed for tuning the triplet energy from 1.86 to 2.35 eV (530-670 nm). Hypsochromic shifts and little variation of the triplet energy were obtained with increasing length of the pi-system for thiophene end-capped oligomers, contrary to the usual behavior of unsubstituted oligomers. The experimental results were supported with theoretical computations from density functional theory (B3LYP/6-31G*) calculations, which indicated that changes in the geometry and delocalization of the triplet excited state account for the trends in the triplet energy evolution.  相似文献   

2.
The structures and electronic states of a series of phenyl-capped oligothiophenes (PnTs) and their ionic species were investigated by means of the density functional theory (DFT). The calculations were performed on the oligomers formed by n repeating units, where n ranges from 2 to 6, using the B3LYP/6-31G** level of theory. The results obtained show that the end-substitution plays a fine-tuning effect on the geometries, electronics, and excitation states. It was found that the oligomers in the doped state have more satisfactory structural and electronic characteristics for the conducting polymers. The conjugated system in the doped oligomers has more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontal molecular orbitals for the PnTs indicate that with increasing the oligomer chain length, the conductive band gap decreases. The calculated ?rst excitation energies of the PnTs at the TD-B3LYP/6-31G** level reveal that the doped PnTs have lower excitation energies than the neutral states. The oligomer chains with a phenyl ring as the end-capped group display red shifts in their absorption spectra. The end-caped substituted oligothiophenes display better characteristics than the unsubstituted ones. It could be anticipated that the phenyl-caped substitution would be helpful to charge-carrier hopings between chains, and thereby, enhance the conductivity.  相似文献   

3.
《Comptes Rendus Chimie》2016,19(5):646-653
The molecular geometries and electronic properties of a series of bis(aminoalkyl) end-capped oligothiophenes (BRnTs) were investigated by means of the density functional theory (DFT). The calculations were performed on dimers up to octamers in the neutral and ionic species using the B3LYP/6-31G(d,p) level of theory. The results obtained show that the conjugated systems in the p- and n-doped oligomers had more aromaticity, with expanded and planar chains. The calculated energy gap values between the frontier molecular orbitals for the end-capped oligomers were larger than those for the unsubstituted oligomers, in which with increase in the oligomer chain length, the conduction band gap decreased. The calculated first excitation energies of BRnTs at the TD-B3LYP/6-31G(d,p) level indicated that both doped oligomers (p- and n-type) had lower excitation energies than the neutral states, and that they displayed red shifts in their absorption spectra. Moreover, the results obtained for the natural bond orbital (NBO) analysis showed that closing the end-side oligothiophene chains with the aminoalkyl groups eased the hole or electron transfer, owning to better charge delocalization through the backbone structures of BRnTs.  相似文献   

4.
Cyclic oligothiophenes (CnT, n = 6-30, even only) in syn- and anti-conformations are studied theoretically at the B3LYP/6-31G(d) level of theory. Strain energies, ionization potentials, HOMO-LUMO gaps, bond length alternations, NICS values, and IR and Raman spectra have been studied. The properties of anti-conformers change systematically with increasing ring size and were studied in detail in neutral, radical cation, and dication forms. In syn-conformation, the oligomers lose their nearly planar ring shape and bend significantly for n > 14, and thus properties cannot be related to ring size. The HOMO-LUMO gap in C14T-syn is even lower than polythiopehene. IR and Raman spectra calculated at the B3LYP/6-31G(d) level are used to differentiate syn- from anti-conformations. The properties of cyclic oligomers are compared to those of the linear system, and cyclic oligothiophenes are revealed as good models for polythiophene. To assist the experimental study of known cyclic oligomers having dibutyl substituents on alternate thiophene rings, the corresponding dimethyl-substituted oligomers are also studied. The experimentally evaluated HOMO-LUMO gaps for alternately dibutyl-substituted cyclic oligomers match the calculated values; however, they are significantly higher than those of the unsubstituted analogues.  相似文献   

5.
Zade SS  Bendikov M 《Organic letters》2006,8(23):5243-5246
[Structure: see text] Extrapolation of HOMO-LUMO gaps for pi-conjugated oligomers at the B3LYP/6-31G(d) level of theory predict accurately (within 0.1-0.2 eV) the band gaps of conjugated polymers only when long (at least 20-mer) pi-conjugated oligomers are used for the extrapolation.  相似文献   

6.
In this Article, we report on the synthesis and full characterization of three perfluorinated oligothiophenes, ranging in length from the trimer to the pentamer (PF-nT, with n = 3, 4, or 5). The differential pulse voltammetry (DPV) analysis of the compounds showed that they can be both oxidized and reduced (i.e., they display a dual or amphoteric electrochemical behavior), with the reduction peaks positively shifted relative to those of the corresponding unsubstituted oligothiophenes. The electrochemically determined energy gaps are in agreement with those measured from the UV-vis-NIR absorption spectra in solution. The conjugational properties have been investigated by means of FT-Raman spectroscopy, both as pure solids and as dilute solutes in CH(2)Cl(2), revealing that: (i) pi-conjugation does not still reach saturation with chain length for the longest oligomer, and (ii) conformational distortions from a nearly coplanar arrangement of the successive thiophene units upon solution are not too large. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G level, to assess information about the optimized molecular structure, equilibrium atomic charges distribution, energies and topologies of the frontier molecular orbitals (MO) around the gap, vibrational normal modes associated with the most outstanding Raman scatterings, and vertical one-electron excitations that give rise to the main optical absorptions.  相似文献   

7.
The geometries of a series of substituted arenediazonium cations (p-NO2, p-CN, p-Cl, p-F, p-H, m-CH3, p-CH3, p-OH, p-OCH3, p-NH2) and the corresponding diazenyl radicals were optimized at the HF/6-31G, MP2/6-31G, B3LYP/6-31G, B3LYP/TZP, B3PW91/TZP, and CASSCF/6-31G levels of theory. Inner-sphere reorganization energies for the single electron-transfer reaction between the species were computed from the optimized geometries according to the NCG method and compared to experimental values determined by Doyle et al. All levels of theory predicted a CNN bond angle of 180 degrees in the cation. A bent neutral diazenyl radical was predicted at all levels of theory excepting B3LYP/TZP and B3PW91/TZP for the p-Cl-substituted compound. Inner-sphere reorganization energies determined at the HF, MP2, and CASSCF levels of theory correlated poorly with both experimental results and calculated geometries. Density functional methods correlated best with the experimental values, with B3LYP/6-31G yielding the most promising results, although the ROHF/6-31G survey also showed some promise. B3LYP/6-31G calculations correctly predicted the order of the inner-sphere reorganization energies for the series, excluding the halogen-substituted compounds, with values ranging from 42.8 kcal x mol(-1) for the p-NO2-substituted species to 55.1 kcal x mol(-1) for NH2. The magnitudes of these energies were lower than the experimental by a factor of 2. For the specific cases examined, the closed-shell cation geometries showed the expected geometry about the CNN bond, with variations in the CN and NN bond lengths correlating with the electron-donating/withdrawing capacity of the substituent. As predicted by Doyle et al., a large geometry change was observed upon reduction. The neutral diazenyl radicals showed a nominal CNN bond angle of 120 degrees and variations in the CN and NN bond lengths also correlated with the electron-donating/withdrawing capacity of the substituent. Changes in theta(CNN) and r(CN) both correlated well with calculated lambda(inner). The key parameters influencing inner-sphere reorganization energy were the CN and NN bond lengths and the CNN bond angle. This influence is explained qualitatively via resonance models produced from NRT analysis and is related to the amount of CN double bond character. Based on these observations, B3LYP/6-31G calculations are clearly the most amenable for calculating inner-sphere reorganization energies for the single electron-transfer reaction between cation/neutral arenediazonium ion couples.  相似文献   

8.
Molecular scale charge motion in disordered organic materials at ambient temperature occurs via a hopping-type mechanism with rates dictated both by the charge transfer integral and by the reorganization energy due to geometric relaxation. This contribution presents a systematic theoretical analysis of cation internal reorganization energies for a broad family of organic oligoheterocycles-variation of reorganization energy with oligomer chain length, heteroatom identity, and a range of heterocycle substituents provides key information on important structural properties governing internal reorganization energies. At room temperature, the range in reorganization energies induced by substituent variations corresponds to a >10(2)-fold variation in intrinsic hole transfer rate, suggesting that changes in reorganization energy dominate variations in charge-transfer rates for many semiconducting/conducting oligomers.  相似文献   

9.
A series of oligothiophene dications (from the sexithiophene dication to the 50-mer oligothiophene dication, nT2+, n = 6-50) were studied. Density functional theory (DFT) at the B3LYP/6-31G(d) level and, in some cases, also at BLYP/6-31Gd, was applied to study the singlet and triplet states of the whole series. We found that the singlet state is the ground state for all oligothiophene dications up to the 20-mer, and that the singlet and triplet states are degenerate for longer oligomers. Thus, the triplet state is never a pure ground state for these dications. We found that, for short oligothiophenes dication (e.g., 6T2+), the bipolaron state is the more important state, with only a small contribution made by the polaron pair state. For medium size oligothiophene dications (e.g., 14T2+), both the bipolaron state and the polaron-pair state contribute to the electronic structure. Finally, in long oligothiophene dications, such as 30T2+ and 50T2+, the contribution from the polaron pair state becomes dominant, and these molecules can be considered as consisting of two independent cation radicals or a polaron pair. Results from isodesmic reactions show that the stability of oligothiophene cation radicals over dications is inversely proportional to chain length. Small oligothiophene dications (n = 6-12) were studied at the CASSCF(m,m)/6-31G(d) (m = 4, 6, and 10) level. The major conclusions of this paper regarding the relative energy of the singlet state versus the triplet state and regarding the relative stability of the bipolaron versus the polaron pair were also supported by CASSCF calculations.  相似文献   

10.
采用密度泛函理论(DFT)-B3LYP/6-31G(d)方法对9,9'-螺双芴低聚物[(SBF)_n(n=1-4)]体系进行全优化,得到各分子的最高占据轨道(HOMO)和最低空轨道(LUMO)能量及HOMO-LUMO能隙,结果表明各分子整体表现出很好的共轭性质.并在分子的阳离子和阴离子状态的优化结构基础上,计算得到电离势(IP)、电子亲和势(EA)、空穴抽取能(HEP)、电子抽取能(EEP)和重组能等相关能量.利用单激发组态相瓦作用(CIS)/3-21G方法优化得到9,9'-螺双芴单体的S_1激发态的几何构型.用含时密度泛函理论(TD-DFT)方法计算得到了分子吸收光谱和荧光光谱的相关数据.随着聚合长度的增加,能隙变窄,空穴注入和电子转移的能力都相应提高,吸收光所需能量减小,吸收强度(f)增大,光谱红移.采用线性外推法,利用低聚物分子的各种性质与聚合度n之间的关系,得到高聚物的相应性质.为考察9位螺芴化的影响,将(SBF)_n的相关性质与母体芴的低聚物[(FL)_n(n=1-4)]进行比较,由两者的计算结果对比显示,在芴的9位螺芴化可以提高电子和空穴的传输能力,并同时保留芴优良的发光性质.  相似文献   

11.
Interring twisting (change in the dihedral angle between conjugated rings) of polythiophene was studied theoretically using periodic boundary conditions (PBC) at the B3LYP/6-31G(d) level. We find that the band gap of polymers is strongly dependent on the interring twist angle; yet twisting requires very little energy. A twist of 30 degrees increases the band gap by 0.75 eV in polythiophene, while requiring only 0.41 kcal mol(-1) per monomer unit. Such a small energetic value is of the order of crystal packing or van der Waals forces. These results are compared with calculations performed on model oligomers. Sexithiophene, its radical cations, and its dication are optimized at 0-180 degrees end-to-end twist angles (which correspond to 0-36 degrees interring dihedral angles) using the B3LYP/6-31G(d) method. The theoretical results suggest that the HOMO-LUMO gap, ionization potential, and charge distribution of oligomers are strongly dependent on twisting, whereas, similar to the case of polythiophene, twisting of neutral oligothiophenes costs very little energy. In the case of the radical cation, the lowest energy transition is shifted to a longer wavelength region on twisting, while the second-lowest energy transition is shifted to a shorter wavelength region. This implies that twisted, doped conducting polymers (modeled here by an oligomer radical cation), in contrast to planar, doped polymers, should be transparent within a certain optical window (in the far-visible region, at approximately 1.5 eV). This observation is explained on the basis of changes in the shape and overlap of the frontier molecular orbitals.  相似文献   

12.
采用密度泛函理论(DFT)-B3LYP/6-31G(d)方法对9,9'-螺双芴低聚物[(SBF)n(n=1-4)]体系进行全优化, 得到各分子的最高占据轨道(HOMO)和最低空轨道(LUMO)能量及HOMO-LUMO能隙, 结果表明各分子整体表现出很好的共轭性质. 并在分子的阳离子和阴离子状态的优化结构基础上, 计算得到电离势(IP)、电子亲和势(EA)、空穴抽取能(HEP)、电子抽取能(EEP)和重组能等相关能量. 利用单激发组态相互作用(CIS)/3-21G方法优化得到9,9'-螺双芴单体的S1激发态的几何构型. 用含时密度泛函理论(TD-DFT)方法计算得到了分子吸收光谱和荧光光谱的相关数据. 随着聚合长度的增加, 能隙变窄, 空穴注入和电子转移的能力都相应提高, 吸收光所需能量减小, 吸收强度(f)增大, 光谱红移. 采用线性外推法, 利用低聚物分子的各种性质与聚合度n之间的关系, 得到高聚物的相应性质.为考察9位螺芴化的影响, 将(SBF)n的相关性质与母体芴的低聚物[(FL)n(n=1-4)]进行比较, 由两者的计算结果对比显示, 在芴的9位螺芴化可以提高电子和空穴的传输能力, 并同时保留芴优良的发光性质.  相似文献   

13.
The beta-carotene radical cation and deprotonated neutral radicals were studied at the density functional theory (DFT) level using different density functionals and basis sets: B3LYP/3-21G, SVWN5/6-31G*, BPW91/DGDZVP2, and B3LYP/6-31G**. The geometries, total energies, spin distributions, and isotropic and anisotropic hyperfine coupling constants of these species were calculated. Deprotonation of the methyl group at the double bond of the cyclohexene ring of the carotenoid radical cation at 5 or 5' produces the most stable neutral radical because of retention of the pi-conjugated system while less stable deprotonation at 9 or 9' and 13 or 13' of the chain methyl groups causes significant distortion of the conjugation. The predicted methyl hyperfine coupling constants of 13-16 MHz of the neutral radicals are in good agreement with the previous electron nuclear double resonance (ENDOR) spectrum of photolyzed beta-carotene on a solid support. DFT calculations on the beta-carotene radical cation in a polar water environment showed that the polar environment does not cause significant changes in the proton hyperfine constants from those in the isolated gas-phase molecule. DFT calculated methyl proton hyperfine coupling constants of less than 7.2 MHz are in agreement with those reported for the radical cation in photosystem II (PS II) and those found in the absence of UV light for the radical cation on a silica alumina matrix.  相似文献   

14.
Poly(4‐vinylpyridine) was determined to possess conductivity in the experiment. In order to understand properties of the polymer, a series of 4‐vinylpyridine oligomers were designed. The structures of these oligomers were optimized using density function theory (DFT) at B3LYP/6‐31G(d) level. The energy gaps and thermal stabilities of the oligomers were decreased when the chain lengths were increased. These properties were also decreased owing to the protonation of the pyridine ring. The holes were easily injected into the oligomers in the presence of hydrochloride. The electrons were conducted in the side chain composed of the pyridine rings rather than the main chain owing to the saturation of the main chain. The 13C nuclear magnetic resonance (NMR) spectra and nucleus independent chemical shifts (NICS) of these compounds were calculated at B3LYP/6‐31G(d) level. The chemical shifts of the carbon atoms connected with the nitrogen atoms in the protonated pyridines were moved upfield in comparison with those of the pyridines. The addition of hydrochloride on the pyridine ring in the oligomers led to the increase of the aromaticities, namely the aromaticities of the oligomers were obviously improved when the pyridine rings were protonated.  相似文献   

15.
[structure: see text] Alternate thiophene/furan oligomers having four and six heterocycles, i.e., oligo(thienylfuran) dimer and trimer 2 (n = 4 and 6), were newly synthesized by repetitive Stille coupling reactions. The structural, electronic, and optical properties of these oligomers were investigated by X-ray crystallography (for n = 4), cyclic voltammetry (CV), UV-vis and fluorescence spectroscopy, and DFT calculations, and the results were compared with those of corresponding oligothiophenes (1) and oligofurans (3). The inter-ring torsional energy profiles calculated for bithiophene 1 (n = 2), thienylfuran 2 (n = 2), and bifuran 3 (n = 2) at the B3LYP/6-31G(d) level indicated that the most stable conformers of 2 (n = 2) and 3 (n = 2) are fully coplanar with transoid structure while that of 1 (n = 2) is twisted with a dihedral angle of 158 degrees . In accord with this, X-ray crystallographic analysis of 2 (n = 4) revealed that the pi-conjugated system is nearly planar with the inter-ring C=C-C=C dihedral angles between the thiophene and furan rings of 173.6(7) degrees , -177.0(7) degrees , and 172.6(6) degrees . In the packing structure, these nearly planar molecules are arranged in a herringbone pattern. The CV on a series of oligo(thienylfuran)s 2 showed irreversible oxidation peaks at +0.90, +0.42, and +0.29 V vs Fc/Fc(+) for n = 2, 4, and 6, which were 0.15-0.18 V lower than those for corresponding oligothiophenes 1 and were closer to those for oligofurans 3. On the other hand, the UV-vis spectra of 2 showed the longest wavelength absorption to be almost identical with those of the corresponding 1, and more bathochromically shifted than those of the corresponding 3. The results of CV and UV-vis measurements were supported by DFT calculations (B3LYP/ 6-311+G(2d,p)//B3LYP/6-31G(d)). Thus, oligo(thienylfuran)s 2 have HOMOs which are higher than those of oligothiophenes 1 and close to those of 3, and HOMO-LUMO gaps which are close to those of 1 and smaller than those of 3. In fluorescence spectra, the quantum yield of 2 increased with elongation of the pi-system (n = 2 (3.5%), 4 (19%), 6 (24%)).  相似文献   

16.
Poly(silanylenediethynylanthracene) (PSDEA) exhibits a hole-transporting ability experi-mentally. In order to simulate the property of PSDEA, a series of silanylenediethynylan-thracene oligomers were designed. The structures of these oligomers were optimized by using density function theory at B3LYP/6-31G(d) level. The energy gaps of the oligomers decrease with the increase in the chain length. The energy gaps of the oligomers also de-crease in the presence of the electron-withdrawing group on the anthracene ring. The 13C chemical shifts and nucleus independent chemical shifts (NICS) at the anthracene ring center in the oligomers were calculated at B3LYP/6-31G level. The chemical shifts of the carbon atoms connected with the nitryl group changed upfield, compared with those of the carbon atoms without the nitryl group. The aromaticity at the anthracene ring center decreases in the presence of the electron-withdrawing group, whereas increases with the increase in the number of the silanylene units. The most sensitive location for calculating the NICS values is 0.1 nm above the anthracene plane.  相似文献   

17.
The hydrogen-bonding ability of five-membered heteroaromatic molecules containing one chalcogen and two heteroatoms with nitrogen in addition to chalcogen, respectively, have been analyzed using density functional and molecular orbital methods through adduct formation with water. The stabilization energies for all the adducts are established at B3LYP/6-31+G* and MP2/6-31+G* levels after correcting for the basis set superposition error by using the counterpoise method and also corrected for zero-point vibrational energies. A natural bond orbital analysis at B3LYP/6-31+G* level and natural energy decomposition analysis at HF/6-31+G* using MP2/6-31+G* geometries have been carried out to understand the nature of hydrogen-bonding interaction in monohydrated heterocyclic adducts. Nucleus-independent chemical shift have been evaluated to understand the correlation between hydrogen bond formation and aromaticity.  相似文献   

18.
The inner-sphere reorganization energy of the electron self-exchange of the couple cyclooctatetraene/cyclooctatetraene radical anion has been investigated by quantum mechanical calculations. The more stable Jahn Teller distorted B2g conformation of the radical anion has been used in this study. Two different theories have been applied in this first part. The harmonic approximation in the classical Marcus scheme has been modified by using projected force constants, which are obtained from the complete force constant matrix and the geometry changes of the molecule during the ET (introduced by Mikkelsen). A different approach (introduced by Nelsen) combines the different energies of the neutral and radical anion with and without relaxation corresponding to the vertical ionization potential and the vertical electron affinity. The electronic energies of the neutral molecule and the radical anion differ dramatically applying three different levels of quantum mechanical calculations (UAM1, UB3LYP, PMP2 with three different basis sets with and without diffuse functions). Nevertheless the Nelsen method gives almost consistent results for the inner-sphere reorganization energies: 120.1 kJ/mol for semiempirical UAM1 method, 159.3 kJ/mol, 156.4 kJ/mol and 158.3 kJ/mol for density functional UB3LYP/6-31G*, UB3LYP/6-31++G* and UB3LYP/AUG-cc-pVDZ calculations and 192.5 kJ/mol for ab-initio PMP2/6-31G* investigations, respectively. These values are in agreement with earlier experimental work supposing the total reorganization energy to be larger than 38 kcal/mol assuming an electron self-exchange rate of 10(4) M(-1) s(-1). The simple harmonic approximation of Marcus relation has not yet been applied for a molecule like cyclooctatetraene with large torsional geometry changes. Using the projected force constants after scaling, considerably different results for the inner-sphere reorganization energy have been calculated: 738.1 kJ/mol for the UB3LYP/6-31G*, 743.3 kJ/mol for UB3LYP/6-31++G* and 759.1 kJ/mol for UB3LYP/AUG-cc-pVDZ level of theory. Comparison with our concentration dependent EPR experiments are controversial to the earlier experimental results, but the latter supports the assumption that the electron self-exchange occurs in a time scale so that the molecules cannot complete their vibrational motions. Therefore the projected Marcus relation is not valid for cyclooctatetraene/cyclooctatetraene radical anion including a large torsional change during the electron transfer.  相似文献   

19.
The bond length alternation (BLA), the highest-occupied-lowest-unoccupied (HO-LU) orbital energy gap, and the corresponding excitation energy are determined for trans-polyacetylene (PA) and polyyne (PY) using density functional theory. Results from the Coulomb-attenuated CAM-B3LYP functional are compared with those from the conventional BHHLYP and B3LYP hybrid functionals. BLA values and HO-LU gaps are determined using both finite oligomer and infinite chain calculations, subject to periodic boundary conditions. TDDFT excitation energies are determined for the oligomers. The oligomer excitation energies and HO-LU gaps are then used, in conjunction with the infinite chain HO-LU gap, to estimate the infinite chain excitation energy. Overall, BHHLYP and CAM-B3LYP give BLA values and excitation energies that are larger and more accurate than those obtained using B3LYP. The results highlight the degree to which excitation energies can be approximated using the HO-LU gaps-at the infinite limit, this approximation works well for B3LYP, but not for the other functionals, where the HO-LU gap is significantly larger. The study provides further evidence for the high-quality theoretical predictions that can be obtained from the CAM-B3LYP functional.  相似文献   

20.
Geometrical and electronic properties have been calculated and are compared with experimental data for three saturated diaza compounds and their radical cations and dications. The molecular geometries in the different oxidation states are consistently reproduced very well using the B3PW91 and B3LYP three-parameter density functional methods, with a modest 6-31G* basis set. The performance of the pure density functionals BLYP and BPW91 is less satisfactory. The Hartree-Fock method yields excellent results in some cases but poor results in others. Ionization potentials and electron-nuclear hyperfine interactions are reproduced moderately well with B3LYP and B3PW91. Electronic excitation energies calculated with time-dependent density functional theory agree very well with experiment in most cases. For 2,7-diazatetracyclo[6.2.2.2(3,6).0(2,7)]tetradecane 2 and its radical cation and dication, the reorganization parameters for self-electron exchange were calculated and compared with experimental and earlier computed data. The calculations allow a good estimate of the different contributions to the energy barrier, i.e., the internal and solvent reorganization energies and the work term in the case of 2+/2++.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号