首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical dynamics to synthesize the 2,4-pentadiynyl-1 radical, HCCCCCH(2)(X(2)B(1)), via the neutral-neutral reaction of dicarbon with methylacetylene, was examined in a crossed molecular beams experiment at a collision energy of 37.6 kJ mol(-1). The laboratory angular distribution and time-of-flight spectra of the 2,4-pentadiynyl-1 radical and its fragmentation patterns were recorded at m/z = 63-60 and m/z = 51-48. Our findings suggest that the reaction dynamics are indirect and dictated by an initial attack of the dicarbon molecule to the pi electron density of the methylacetylene molecule to form cyclic collision complexes. The latter ultimately rearranged via ring opening to methyldiacetylene, CH(3)-C triple bond C-C triple bond C-H. This structure decomposed via atomic hydrogen emission to the 2,4-pentadiynyl-1 radical; here, the hydrogen atom was found to be emitted almost parallel to the total angular momentum as suggested by the experimentally observed sideways scattering. The overall reaction was strongly exoergic by 182 +/- 10 kJ mol(-1). The identification of the resonance-stabilized free 2,4-pentadiynyl-1 radical represents a solid background for the title reaction to be included into more refined reaction networks modeling the chemistry of circumstellar envelopes and also of sooting combustion flames.  相似文献   

2.
The reaction of ethynyl radical (C(2)H) with allene (C(3)H(4)) at room temperature is investigated using an improved synchrotron multiplexed photoionization mass spectrometer (MPIMS) coupled to tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL). The orthogonal-accelerated time-of-flight mass spectrometer (OA-TOF) compared to the magnetic sector mass spectrometer used in a previous investigation of the title reaction (Phys. Chem. Chem. Phys., 2007, 9, 4291) enables more sensitive and selective detection of low-yield isomeric products. The C(5)H(4) isomer with the lowest ionization energy, pentatetraene, is now identified as a product of the reaction. Pentatetraene is predicted to be formed based on recent ab initio/RRKM calculations (Phys. Chem. Chem. Phys., 2010, 12, 2606) on the C(5)H(5) potential energy surface. However, the computed branching fraction for pentatetraene is predicted to be five times higher than that for methyldiacetylene, whereas experimentally the branching fraction of pentatetraene is observed to be small compared to that of methyldiacetylene. Although H-atom assisted isomerization of the products can affect isomer distribution measurements, isomerization has a negligible effect in this case. The kinetic behavior of the several C(5)H(4) isomers is identical, as obtained by time-dependent photoionization spectra. Even for high allene concentrations (and hence higher H-atom concentrations) no decay of the pentatetraene fraction is observed, indicating that H-assisted isomerization of pentatetraene to methyldiacetylene does not account for the difference between the experimental data and the theoretical branching ratios.  相似文献   

3.
Vibrationally excited CF2BrCF2CH3 and CF2BrCF2CD3 molecules were prepared with 96 kcal mol-1 energy at room temperature by the recombination of CF2BrCF2 and CH3 (CD3) radicals. The observed unimolecular reactions are 1,2-BrF interchange to give CF3CFBrCH3 (CD3) molecules and 2,3-FH (FD) elimination; the rate constants are 2.2 x 10(5) (1.5 x 10(5)) s(-1) and 2.0 x 105 (0.75 x 10(5)) s(-1), respectively. The CF3CFBrCH3 (CD3) molecules rapidly, relative to the reverse reaction, eliminate HBr or DBr to give the observed product CF3CF=CH2 (CD2). Density functional theory at the B3PW91/6-311+G(2d,p) level was used to obtain vibrational frequencies and moments of inertia of the molecule and transition states for subsequent calculations of statistical rate constants for CF2BrCF2CH3 and CF2BrCF2CD3. Matching experimental and calculated rate constants gave threshold energies of 62 and 66 kcal mol-1 for 1,2-BrF interchange and 2,3-FH elimination, respectively. The BrF interchange reaction is compared to ClF interchange from CF2ClCF2CH3 and CF2ClCHFCH3.  相似文献   

4.
This paper reports the first quantitative ab initio prediction of the disproportionation/combination ratio of alkyl+alkyl reactions using CH3+C2H5 as an example. The reaction has been investigated by the modified Gaussian-2 method with variational transition state or Rice-Ramsperger-Kassel-Marcus calculations for several channels producing (1) CH4+CH2CH2, (2) C3H8, (3) CH4CH3CH, (4) H2+CH3CHCH2, (5) H2+CH3CCH3, and (6) C2H6+CH2 by H-abstraction and association/decomposition mechanisms through singlet and triplet potential energy paths. Significantly, the disproportionation reaction (1) producing CH4+C2H4 was found to occur primarily by the lowest energy path via a loose hydrogen-bonding singlet molecular complex, H3CHC2H4, with a 3.5 kcal/mol binding energy and a small decomposition barrier (1.9 kcal/mol), instead of a direct H-abstraction process. Bimolecular reaction rate constants for the formation of the above products have been calculated in the temperature range 300-3000 K. At 1 atm, formation of C3H8 is dominant below 1200 K. Over 1200 K, the disproportionation reaction becomes competitive. The sum of products (3)-(6) accounts for less than 0.3% below 1500 K and it reaches around 1%-4% above 2000 K. The predicted rate constant for the disproportionation reaction with multiple reflections above the complex well, k1=5.04 x T(0.41) exp(429/T) at 200-600 K and k1=1.96 x 10(-20) T(2.45) exp(1470/T) cm3 molecule(-1) s(-1) at 600-3000 K, agrees closely with experimental values. Similarly, the predicted high-pressure rate constants for the combination reaction forming C3H8 and its reverse dissociation reaction in the temperature range 300-3000 K, k2(infinity)=2.41 x 10(-10) T(-0.34) exp(259/T) cm3 molecule(-1) s(-1) and k(-2)(infinity)=8.89 x 10(22) T(-1.67)exp(-46 037/T) s(-1), respectively, are also in good agreement with available experimental data.  相似文献   

5.
The reactions between O(-) and C(2)H(2) have been studied using the crossed-beam technique and density-functional theory (DFT) calculations in the collision energy range from 0.35 to 1.5 eV (34-145 kJmol). Both proton transfer and C-O bond formation are observed. The proton transfer channel forming C(2)H(-) is the dominant pathway. The center-of-mass flux distributions of the C(2)H(-) product ions are highly asymmetric, with maxima close to the velocity and direction of the precursor acetylene beam, characteristic of direct reactions. The reaction quantitatively transforms the entire reaction exothermicity into internal excitation of the products, consistent with mixed energy release in which the proton is transferred in a configuration in which both the breaking and the forming bonds are extended. The C-O bond formation channel producing HC(2)O(-) displays a distinctive kinematic picture in which the product distribution switches from predominantly forward scattering with a weak backward peak to sideways scattering as the collision energy increases. At low collision energies, the reaction occurs through an intermediate that lives a significant fraction of a rotational period. The asymmetry in the distribution leads to a lifetime estimate of 600 fs, in reasonable agreement with DFT calculations showing that hydrogen-atom migration is rate limiting. At higher collision energies, the sideways-scattered products arise from repulsive energy release from a bent transition state.  相似文献   

6.
Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.  相似文献   

7.
Crossed molecular beams experiments have been utilized to investigate the reaction dynamics between two closed shell species, i.e. the reactions of tricarbon molecules, C(3)(X(1)Sigma(g)(+)), with allene (H(2)CCCH(2); X(1)A(1)), and with methylacetylene (CH(3)CCH; X(1)A(1)). Our investigations indicated that both these reactions featured characteristic threshold energies of 40-50 kJ mol(-1). The reaction dynamics are indirect and suggested the reactions proceeded via an initial addition of the tricarbon molecule to the unsaturated hydrocarbon molecules forming initially cyclic reaction intermediates of the generic formula C(6)H(4). The cyclic intermediates isomerize to yield eventually the acyclic isomers CH(3)CCCCCH (methylacetylene reaction) and H(2)CCCCCCH(2) (allene reaction). Both structures decompose via atomic hydrogen elimination to form the 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH). Future flame studies utilizing the Advanced Light Source should therefore investigate the existence of 1-hexene-3,4-diynyl-2 radicals in high temperature methylacetylene and allene flames. Since the corresponding C(3)H(3), C(4)H(3), and C(5)H(3) radicals have been identified via their ionization potentials in combustion flames, the existence of the C(6)H(3) isomer 1-hexene-3,4-diynyl-2 can be predicted as well.  相似文献   

8.
Reaction mechanisms between MH (M=B, Al) and the H2S molecule have been theoretically studied. The G3 ab initio and DFT calculations demonstrate that only one stable addition complex (HM:SH2, M=B, Al) can be formed, and that, starting from the addition complex (HM:SH2) two parallel reaction channels have been found: one is an addition reaction to give H2MSH via the three‐membered ring transition state (TS), and the other is a dehydrogenation reaction to give MSH+H2 via the four‐membered ring TS. Thermodynamics and Eyring transition state theory (TST) with the Wigner correction are also used to compute the thermodynamic functions, the equilibrium constants, A factors, and the rate constants of these reaction channels at 300–1500 K. The calculated results predict that the product H2BSH in the system of BH+H2S and the product AlSH+H2 in the system of AlH+H2S will be mainly observed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

9.
The proton transfer reaction between OH- and C2H2, the sole reactive process observed over the collision energy range from 0.37 to 1.40 eV, has been studied using the crossed beam technique and density-functional theory (DFT) calculations. The center of mass flux distributions of the product C2H- ions at three different energies are highly asymmetric, characteristic of a direct process occurring on a time scale much less than a rotational period of any transient intermediate. The maxima in the flux distributions correspond to product velocities and directions close to those of the precursor acetylene reactants. The reaction quantitatively transforms the entire exothermicity into internal excitation of the products, consistent with an energy release motif in which the proton is transferred early, in a configuration in which the forming bond is extended. This picture is supported by DFT calculations showing that the first electrostatically bound intermediate on the reaction pathway is the productlike C2H- H2O species. Most of the incremental translational energy in the two higher collision energy experiments appears in product translational energy, and provides an example of induced repulsive energy release characteristic of the heavy+light-heavy mass combination.  相似文献   

10.
Thermal F atoms react with gaseous (CH2CHCH2)4Ge to produce CH2CHF through dissociation of the (CH2CHCH2)3-GeCH2CHFCH2* radical. The rapid decomposition is attributed to non-RRKM behavior with excitation energy largely confined to the CH2CHFCH2 side group. The central atoms mass effect found in linear seven-atom trajectory calculations has not yet appeared in (CH2CHCH2)4M with the replacement of Sn by Ge.  相似文献   

11.
用量子化学B3LYP/6 - 311+G(d,p)方法优化了H2ClCS单分子分解反应驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.用QCISD(T)/6-311++G(d,p)方法计算各物种的单点能,并对总能量进行了零点能校正.利用经典过渡态理论(TST)与...  相似文献   

12.
The reaction of ground state boron atoms, 11B(2Pj), with allene, H2CCCH2(X1A1), was studied under single collision conditions at a collision energy of 21.5 kJ mol(-1) utilizing the crossed molecular beam technique; the experimental data were combined with electronic structure calculations on the 11BC3H4 potential energy surface. The chemical dynamics were found to be indirect and initiated by an addition of the boron atom to the pi-electron density of the allene molecule leading ultimately to a cyclic reaction intermediate. The latter underwent ring-opening to yield an acyclic intermediate H2CCBCH2. As derived from the center-of-mass functions, this structure was long-lived with respect to its rotational period and decomposed via an atomic hydrogen loss through a tight exit transition state to form the closed shell, C2v symmetric H-C is equivalent C-B=CH2 molecule. A brief comparison of the product isomers formed in the reaction of boron atoms with methylacetylene is also presented.  相似文献   

13.
A combined density functional and ab initio quantum chemical study of the substitution reactions of the germylenoid H2GeFBeF with RH (R = F, OH, NH2) compounds was carried out. The geometries of all the stationary points of the reactions were optimized using the DFT B3LYP method and then the QCISD method was used to calculate the single-point energies. The theoretical calculations indicated that along the potential energy surface, there were one transition state (TS) and one intermediate (IM) which connected the reactants and the products. The three substitution reactions of H2GeFBeF with RH are compared with the addition reactions of H2Ge with RH. And based on the calculated results we concluded that the substitution reactions of H2GeFBeF + RH involve two steps. One is dissociation onto H2Ge + BeF2, and the other is the addition reaction of H2Ge with RH.  相似文献   

14.
15.
The results of a study of the ion-molecule reactions of N(+), N(2)(+), and HCN(+) with methane, acetylene, and ethylene are reported. These studies were performed using the FA-SIFT at the University of Canterbury. The reactions studied here are important to understanding the ion chemistry in Titan's atmosphere. N(+) and N(2)(+) are the primary ions formed by photo-ionization and electron impact in Titan's ionosphere and drive Titan's ion chemistry. It is therefore very important to know how these ions react with the principal trace neutral species in Titan's atmosphere: Methane, acetylene, and ethylene. While these reactions have been studied before the product channels have been difficult to define as several potential isobaric products make a definitive answer difficult. Mass overlap causes difficulties in making unambiguous species assignments in these systems. Two discriminators have been used in this study to resolve the mass overlap problem. They are deuterium labeling and also the differences in reactivities of each isobar with various neutral reactants. Several differences have been found from the products in previous work. The HCN(+) ion is important in both Titan's atmosphere and in the laboratory.  相似文献   

16.
Photolysis of the tetrahedrane Fe2(CO)6(mu-S2) at 450 +/- 35 nm in a Nujol matrix at low temperatures gives an isomer characterized by its nu(CO) infrared frequencies. Comparison of these experimental frequencies with those calculated by density functional theory using the BP86 functional indicates this photoisomer to be the butterfly singlet diradical Fe2(CO)6S2 isomer in which the S-S bond of the tetrahedrane is broken but the Fe-Fe bond is retained. Photolysis at higher energies (420-280 nm) results in CO loss from this singlet butterfly diradical as indicated again by comparison of the experimental infrared nu(CO) frequencies with those calculated for an Fe2(CO)5S2 isomer of this type.  相似文献   

17.
The adsorption and dissociation mechanism of NH2NO2 on the Mg surface have been investigated by the generalized gradient approximation of density functional theory. Calculations employ a supercell (3 × 3 × 3) slab model and three-dimensional periodic boundary conditions. The strong attractive force between oxygen and Mg atoms induces the N–O bond of the NH2NO2 to decompose. The dissociated oxygen atoms and radical fragment of NH2NO2 oxidize readily Mg atoms. The largest adsorption energy is ?860.5 kJ/mol. The largest charge transfer is 3.76 e from surface Mg atoms to fragments of NH2NO2. The energy barriers of N–O bond dissociation are in a range of 11.6–36.5 kJ/mol. The adsorption energy of NH2NO2 on the Mg surface compensates the energy needed for the N–O bond dissociation.  相似文献   

18.
Reactive quenching of OH(A 2Sigma+,v=0) by D2 forming HOD+D was studied in crossed molecular beams. The D atom products are primarily forward scattered relative to the incident D2. The dominant mechanism involves a direct reaction from relatively large impact parameters with approximately 88% of the available energy appearing in HOD internal excitation.  相似文献   

19.
Ab initio modified Gaussian-2 G2M(RCC,MP2) calculations have been performed for various isomers and transition states on the singlet C4H4 potential energy surface. The computed relative energies and molecular parameters have then been used to calculate energy-dependent rate constants for different isomerization and dissociation processes in the C4H4 system employing Rice-Ramsperger-Kassel-Marcus theory and to predict branching ratios of possible products of the C2(1Sigmag+)+C2H4, C(1D)+H2CCCH2, and C(1D)+H3CCCH reactions under single-collision conditions. The results show that C2 adds to the double C=C bond of ethylene without a barrier to form carbenecyclopropane, which then isomerizes to butatriene by a formal C2 "insertion" into the C-C bond of the C2H4 fragment. Butatriene can rearrange to the other isomers of C4H4, including allenylcarbene, methylenecyclopropene, vinylacetylene, methylpropargylene, cyclobutadiene, tetrahedrane, methylcyclopropenylidene, and bicyclobutene. The major decomposition products of the chemically activated C4H4 molecule formed in the C2(1Sigmag+)+C2H4 reaction are calculated to be acetylene+vinylidene (48.6% at Ecol = 0) and 1-buten-3-yne-2-yl radical [i-C4H3(X2A'), H2C=C=C=CH*]+H (41.3%). As the collision energy increases from 0 to 10 kcal/mol, the relative yield of i-C4H3+H grows to 52.6% and that of C2H2+CCH2 decreases to 35.5%. For the C(1D)+allene reaction, the most important products are also i-C4H3+H (55.2%) and C2H2+CCH2 (30.1%), but for C(1D)+methylacetylene, which accesses a different region of the C4H4 singlet potential energy surface, the calculated product branching ratios differ significantly: 65%-69% for i-C4H3+H, 18%-14% for C2H2+CCH2, and approximately 8% for diacetylene+H2.  相似文献   

20.
The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kaiser, A. H. H. Chang, J. Chem. Phys., 2005, 122, 074320). Our investigations suggest that the reaction follows indirect scattering dynamics via addition of the carbon atom to the carbon-carbon double bond of the vinyl cyanide molecule yielding a cyano cyclopropylidene collision complex. The latter undergoes ring opening to form cis/trans triplet cyano allene which fragments predominantly to the 1-cyano propargyl radical via tight exit transition states; the 3-cyano propargyl isomer was inferred to be formed at least a factor of two less; also, no molecular hydrogen elimination channel was observed experimentally. These results are in agreement with the computational studies predicting solely the existence of a carbon versus hydrogen atom exchange pathway and the dominance of the 1-cyano propargyl radical product. The discovery of the cyano propargyl radical in the reaction of atomic carbon with vinyl cyanide under single collision conditions implies that this molecule can be an important reaction intermediate in combustion flames and also in extraterrestrial environments (cold molecular clouds, circumstellar envelopes of carbon stars) which could lead to the formation of cyano benzene (C6H5CN) upon reaction with a propargyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号