首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
血管壁损伤时,血小板聚集形成血栓。血栓形成的数值模拟研究有助于加深对生理过程的了解,为疾病的预防与治疗提供科学依据。血栓形成是一个包涵多相流、颗粒流的复杂问题,MPS方法作为拉格朗日粒子方法具有独特优势。本文提出了一种基于MPS方法的血栓模型,将血小板简化为单个粒子,红细胞由1个核粒子和20个吸附粒子组成以维持圆盘形态,活化血小板与受损血管壁之间的吸附力和聚集力用弹簧模型模拟。本文计算了二维90°Y型分叉管中血栓形成的过程。结果显示血栓形成的位置和大小对红细胞进入两个分叉的比例有密切影响。  相似文献   

2.
本文采用分子动力学方法,模拟了流体在晶面结构为FCC100、FCC110、FCC111壁面上的吸附现象,结果表明壁面结构对粒子的吸附有较大的影响.在相同的条件下,三种晶面结构的吸附区产生的吸附作用力不相同,FCC110结构壁面的吸附粒子更贴近壁面,FCC111结构壁面吸附的粒子最多.在纳米尺度下定义壁面相对光滑度来表征...  相似文献   

3.
切向动量协调系数(TMAC)是描述气体滑移流动的重要边界条件。运用非平衡分子动力学方法,构建了能够反映流体粒子与壁面粒子相互作用关系的物理模型。结果显示:当壁面存在吸附层或壁面无气体吸附层时,同一势能强度下TMAC值都随着温度的升高而降低;而在吸附层能够解吸附的温度,TMAC值发生突跃。在本文的模拟条件下,气体粒子离开壁面吸附的能力和壁面粒子及吸附层粒子热运动产生的粗糙度决定了TMAC值的分布。  相似文献   

4.
耗散粒子动力学(DPD)是一种针对介观流体的高效的粒子模拟方法,经过二十多年发展已经在诸如聚合物、红细胞、液滴浸润性等方面有了很多研究应用.但是因为其边界处理手段的不完善,耗散粒子动力学模拟仍局限于相对简单的几何边界问题中.本文提出一种能自适应各种复杂几何边界的处理方法,并能同时满足三大边界要求:流体粒子不穿透壁面、边界处速度无滑移、边界处密度和温度波动小.具体地,通过给每个壁面粒子赋予一个新的矢量属性—局部壁面法向量,该属性通过加权计算周围壁面粒子的位置得到;然后通过定义周围固体占比概念,仅提取固体壁面的表层粒子参与模拟计算,减少了模拟中无效的粒子;最后在运行中,实时计算每个流体粒子周围固体粒子占比,判断是否进入固体壁面内,如果进入则修正速度和位置.我们将这种方法应用于Poiseuille流动,验证了该方法符合各项要求,随后还在复杂血管网络和结构化固体壁面上展示了该边界处理方法的应用.这种方法使得DPD模拟不再局限于简单函数描述的壁面曲线,而是可以直接从各种设计图纸和实验扫描影像中提取壁面,极大地拓展了DPD的应用范围.  相似文献   

5.
白玲  李大鸣  李彦卿  王志超  李杨杨 《物理学报》2015,64(11):114701-114701
液滴撞击疏水壁面过程的研究在介观流体力学和微流体作用材料科学的研究中具有重要的理论意义和工程价值. 论文在SPH方法中引入范德瓦尔斯状态方程处理液滴表面张力, 考虑流体粒子之间远程吸引, 近程排斥的内部作用力, 提出了流体粒子与疏水壁面粒子间势能函数与表面张力相结合的作用模式. 通过模拟真空条件下两个静止的等体积液滴相互融合的过程, 验证了计算模式在模拟液滴的表面张力中的有效性. 采用该模式模拟的液滴撞击疏水壁面过程, 不仅能够有效地模拟液滴撞击壁面后的变形过程, 而且清晰地模拟出液滴的回弹、腾空以及二次撞壁现象的完整过程. 模拟结果与液滴撞击疏水壁面的实验结果以及VOF模拟结果符合较好, 表明本文所提出的表面张力和疏水壁面作用力处理模式对模拟液滴撞壁过程具有实际应用价值.  相似文献   

6.
强洪夫  刘开  陈福振 《物理学报》2012,61(20):282-293
为准确模拟液滴在气固交界面变形移动问题,对基于连续表面张力模型的表面张力光滑粒子流体动力学方法进行了改进.改进方法采用新的边界处理方式和界面法向修正方法,即将固体边界虚粒子色函数值根据液面的位置进行相应设定以保证气-液-固三相交界处流体粒子的界面法向沿接触线法线方向,引入Brackbill提出的壁面附着力边界条件处理方法,对在气-液-固三相交界处的流体粒子及部分固体边界虚粒子的界面法向进行修正,修正前后保持法向模值不变,得到了含壁面附着力边界条件的表面张力算法.模拟了受壁面附着力影响的水槽中液面的变化过程、液滴润湿壁面过程和剪切气流驱动液滴在固体表面变形脱落过程,并与流体体积函数方法进行了对比.结果表明,该方法在处理壁面附着力问题时精度较高,稳定性较好,适合处理工程中液滴在气固交界面变形移动问题.  相似文献   

7.
苏铁熊  马理强  刘谋斌  常建忠 《物理学报》2013,62(6):64702-064702
采用改进的光滑粒子动力学(SPH)方法对液滴冲击固壁面问题进行了数值模拟. 为了提高传统SPH方法的计算精度和数值稳定性, 在传统的SPH方法的基础上对粒子方法中的密度和核梯度进行了修正, 采用了考虑黎曼解法的SPH流体控制方程, 构造了一种新型的粒子间相互作用力(IIF)模型来模拟表面张力的影响. 应用改进的SPH方法对液滴冲击固壁面问题进行了数值模拟. 计算结果表明:新型的IIF 模型能够较好地模拟表面张力的影响, 改进的SPH方法能够精细地描述液滴与固壁面相互作用过程中液滴的内部压力场演变和自由面形态变化, 液滴的铺展因子随初始韦伯数的增大而增大, 数值模拟结果与实验得到的结果基本一致. 关键词: 液滴 固壁面 光滑粒子动力学 表面张力  相似文献   

8.
李大鸣  王志超  白玲  王笑 《物理学报》2013,62(19):194704-194704
采用光滑粒子流体动力学(SPH)方法模拟了液滴撞击带孔壁面的问题, 提出了随计算区域变化的链表搜索法. 结合实验进一步研究了不同物理条件下黏性、重力和内部压应力波动对铺展过程中液滴在 孔口运动情况的影响, 详细分析了有限时间段内孔口断面处的压强变化. 结果表明: 液滴撞击表面后快速向两端铺展, 到达孔口上方时形成射流, 在极短暂时间内重力对射流的影响很小, 但是黏性会引起射流向孔内弯曲. 在内部压应力和惯性作用下射流下部产生有规律的波动, 使得孔口上方流体反复的膨胀和吸收将附近应力较高区域流体吸入孔内发生孔吸现象. 内部压应力是导致液滴被吸入孔内并撞击另一侧孔壁形成飞溅现象的主要原因, 模拟效果和实验结果符合良好. 关键词: 液滴 带孔壁面 光滑粒子流体动力学(SPH) 链表搜索法  相似文献   

9.
段萍  曹安宁  沈鸿娟  周新维  覃海娟  刘金远  卿绍伟 《物理学报》2013,62(20):205205-205205
采用二维粒子模拟方法研究了霍尔推进器通道中电子温度对等离子体鞘层特性的影响, 讨论了不同电子温度下电子数密度、鞘层电势、电场及二次电子发射系数的变化规律. 结果表明: 当电子温度较低时, 鞘层中电子数密度沿径向方向呈指数下降, 在近壁处达到最小值, 鞘层电势降和电场径向分量变化均较大, 壁面电势维持一稳定值不变, 鞘层稳定性好; 当电子温度较高时, 鞘层区内与鞘层边界处电子数密度基本相等, 而在近壁面窄区域内迅速增加, 壁面处达到最大值, 鞘层电势变化缓慢, 电势降和电场径向分量变化均较小, 壁面电势近似维持等幅振荡, 鞘层稳定性降低; 电子温度对电场轴向分量影响较小; 随电子温度的增大, 壁面二次电子发射系数先增大后减少. 关键词: 霍尔推进器 等离子体鞘层 电子温度 粒子模拟  相似文献   

10.
张龙艳  徐进良  雷俊鹏 《物理学报》2018,67(23):234702-234702
采用分子动力学方法模拟纳米尺度下液体在固体壁面上发生核化沸腾的过程,主要研究壁面浸润性对气泡初始核化过程和气泡生长速率的影响以及固-液界面效应在液体核化沸腾的能量传递过程中所起到的作用.研究结果发现:壁面浸润性越强,气泡在固壁处越容易核化.该结果与经典核化理论中“疏水壁面易于产生气泡”的现象产生了明显的区别.其根本原因是在纳米尺度下,固-液界面热阻效应不能被忽略.一方面,在相同的壁温下,通过增强固-液相互作用,可以显著降低界面热阻,使得热量传递效率提高,导致靠近壁面处的流体温度升高,气泡核化等待时间缩短,有利于液体沸腾核化.另一方面,气泡的生长速率随着壁面浸润性的增强而明显升高.当气泡体积生长到一定程度时,会在壁面处形成气膜,从而导致壁面传热性能恶化.因此,通过壁面的热流密度呈现出先增大后减小的规律.  相似文献   

11.
《Comptes Rendus Physique》2013,14(6):459-469
Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.  相似文献   

12.
《Physica A》2006,362(1):191-196
Leukocyte rolling on the vascular endothelium requires initial contact between the circulating leukocytes in the blood and the vessel wall. Although specific adhesion mechanisms are involved in leukocyte–endothelium interactions, adhesion patterns in vivo suggest other rheological mechanisms are involved as well. Previous studies have proposed that the abundance of leukocyte rolling in postcapillary venules is due to interactions between red blood cells and leukocytes as they enter capillary expansions as well as red blood cell (RBC) aggregation. We have established a lattice Boltzmann approach to analyze the interactions of RBC aggregates and leukocytes as they flow through a postcapillary expansion. The lattice Boltzmann technique provides the complete solution of the flow field and quantification of the particle–particle forces. Our results show that RBC aggregation strongly influences leukocyte–endothelium interactions.  相似文献   

13.
Zhou XL  Zhu H  Zhang SZ  Zhu FM  Chen GM  Yan LX 《Cryo letters》2007,28(3):187-196
Freeze-drying of human platelets is one potentially ideal approach for long-term preservation of platelets. In this study, effects of concentration and type of saccharides, freezing rate and initial cell concentration on the recovery of freeze-dried platelets were investigated. Annexin V binding platelet activation assays, scanning electron microscopy and platelet aggregation upon thrombin (1 U/ml) addition were used to evaluate the effectiveness of platelet freeze-drying. The numerical recovery of freeze-dried platelets was reached as high as 93.0+/-5.2 percent and the recovery of nonactive platelets was reached up to 85.7 +/- 3.4 percent in the presence of 1% BSA and 20% trehalose. Frozen by shelf pre-cooling was the best way to freeze the sample in this study and the numerical recovery of freeze-dried platelets was reached 93.0 +/- 5.2 percent at about 10 degree C/min. When the platelet concentration was increased from 0.2 to 4x10(9) platelets/ml, recovery remained higher than 81.4 percent. The morphology of freeze-dried and rehydrated platelets was intact but a little rounder compared with fresh platelets. The maximum aggregation rate to thrombin (1 U/ml) of freeze-dried platelets was 83.9 percent of the fresh ones, but aggregation speed was 43.0 percent of the fresh ones. Further research on rehydration process and scale up are required.  相似文献   

14.
When a colloidal suspension is allowed to wet a suitable substrate, various patterns emerge that can be varied from isolated island-like structures to fractal patterns. In this work we investigate the patterns arising from the interplay of colloidal copper sulfate suspensions containing carbon nanotubes with few-layer graphene substrates. The compositions of the thin film samples were investigated using X-ray photoelectron spectroscopy, surface topography and the nanostructure of the thin films were probed with atomic force microscope and transmission electron microscope respectively. The colloidal suspensions were characterized using contact angle and viscosity measurements. The colloidal suspensions when dip coated on few-layer graphene substrates exhibited fractal like morphology with the aggregation of copper sulfate crystallites to hexagonal platelets. This aggregation is explained invoking the depletion attraction theory. The various patterns observed experimentally were reproduced using a Monte Carlo simulation.  相似文献   

15.
Extracellular matrix (ECM) used to modify biomaterial surface is a promising method for improving cardiovascular material hemocompatibility. In the present work, human umbilical vein endothelial cells (HUVECs) are cultured and native ECM is obtained on pure titanium surface. Fourier infrared spectrum (FTIR) test proves the existence of amide I and amide II band on the modified titanium surface. X-ray photoelectron spectroscopy (XPS) further confirms the chemical composition and binding types of the ECM proteins on the titanium substrate. The results of light microscopy and atomic force microscopy (AFM) exhibit the morphology of HUVEC derived ECM. There are higher water contact angles on the ECM modified samples. Furthermore, some ECM components, including fibronectin (FN), laminin (LN) and type IV collagen (IV-COL) are presented on ECM-covered titanium surface by immunofluorescence staining. The biological behavior of cultured HUVECs and adherent platelets on different samples are investigated by in vitro HUVECs culture and platelet adhesion. Cells exhibit better morphology and their proliferation ability greatly improve on the ECM-covered titanium. At the same time, the platelet adhesion and spreading are inhibited on ECM-covered titanium surface. These investigations demonstrate that ECM produced by HUVECs cannot only improve adhesion and proliferation ability of endothelial cell but also inhibit adhesion and activation of platelets. Thus, the approach described here may provide a basis for preparation of modified surface in cardiovascular implants application.  相似文献   

16.
Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of blood cells with the vessel walls, as well as on their collective behavior and deformability. We find WBC margination to be optimal in intermediate ranges of red blood cell (RBC) volume fractions and flow rates, while, beyond these ranges, it is substantially attenuated. RBC aggregation enhances WBC margination, while WBC deformability reduces it. These results are combined in state diagrams, which identify WBC margination for a wide range of flow and cell suspension conditions.  相似文献   

17.
Zhou XL  Zhu H  Zhang SZ  Zhu FM  Chen GM  Yan LX 《Cryo letters》2006,27(1):43-50
Freeze-drying is an ideal alternative for long-term preservation of platelets in blood banks. Intracellular trehalose is believed to be an effective lyoprotectant for preserving cells during freeze-drying. In this study, 13 mM intracellular trehalose was loaded into human platelets through fluid-phase endocytosis pathway. Bovine serum albumin and trehalose were used as extracellular protectants. The effects of intracellular trehalose and extracellular protectants on freeze-dried platelets were studied respectively. The results showed 13 mM intracellular trehalose was beneficial to freeze-dried human platelets, but only slightly enhanced the protection afforded by extracellular protectants. Loaded with 13 mM intracellular trehalose, platelets were freeze-dried in a formulation of 1 percent bovine serum albumin and 1 percent trehalose, 40 days later, the survival rate of rehydrated platelets was about 85 percent, the morphology of rehydrated platelets was intact and the aggregation percentage with thrombin (1 U/ml) was 97.3 percent.  相似文献   

18.
Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.  相似文献   

19.
To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.  相似文献   

20.
This work deals with improving the blood-compatibility of titanium by coating it with heparin (Hep) and collagen (Col) using a layer-by-layer (LBL) self-assembly technique. In the work described here, LBL-produced Hep-Col film growth is initialized by deposition of a layer of positively charged polyl-Lysine (PLL) on a titanium surface, which is negatively charged after treatment with NaOH, followed by formation of a multilayer thin film formed by alternating deposition of negatively charged heparin and positively charged collagen utilizing electrostatic interaction. The chemical composition, wettability, surface topography, mass and thickness of the film were investigated by Fourier transform infrared spectroscopy, water contact angle measurement, scanning electron microscopy, atomic force microscopy, electronic analytical semi-microbalances, and XP stylus profilometry. The in vitro platelet adhesion and activation were investigated by a static platelet adhesion test probing the lactate dehydrogenase (LDH) release of adherent platelets after lysis and by a P-selectin assay. The clotting time was examined by activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. All obtained data showed that the LBL film can significantly decrease platelet adhesion and activation, and prolong clotting time of APTT and PT compared to untreated titanium. LBL-produced Hep-Col films on titanium display more excellent anticoagulation performance than on the surface of titanium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号