首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
小通道扁管内纳米流体流动与传热特性   总被引:2,自引:0,他引:2  
建立了测量小通道扁管内纳米流体流动与对流换热性能的实验系统,测量了不同粒子体积份额的水-Cu纳米 流体的管内对流换热系数和摩擦阻力系数,实验结果表明,在相同雷诺数条件下,小通道扁管内纳米流体的对流换热系数 大于纯液体,且随粒子的体积份额的增加而增大,而纳米流体的阻力系数并未明显增大。  相似文献   

2.
《工程热物理学报》2021,42(9):2394-2400
实验测量罗丹明B在大肠杆菌悬浮液中的扩散系数,考察大肠杆菌悬浮液温度、浓度和细菌活性对罗丹明B扩散传质的影响。实验结果表明,罗丹明B在悬浮液中的有效扩散系数比其在磷酸缓冲盐溶液(PBS)中的扩散系数大1个数量级,且有效扩散系数随悬浮液温度升高和细菌浓度增大而增大;细菌自驱动行为是强化悬浮液中小分子扩散传质的重要因素,罗丹明B的活性扩散系数随细菌悬浮液浓度增加和温度升高而增大,活性扩散系数因细菌的集群运动会随悬浮液浓度变化发生阶跃增大;均方位移和扩散时间的对应关系表明罗丹明B的扩散在短时间内为标准菲克扩散,一段时间后转变为超扩散,且转变时间随悬浮液温度升高而延迟,随着悬浮液浓度增加而提前。  相似文献   

3.
纳米流体对流换热的实验研究   总被引:15,自引:3,他引:12  
建立了测量纳米流体对流换热系数的实验系统,测量了不同粒子体积份额的水-Cu纳米流体在层流与湍流状态下的管内对流换热系数,实验结果表明,在液体中添加纳米粒子增大了液体的管内对流换热系数,粒子的体积份额是影响纳米流体对流换热系数的因素之一。综合考虑影响纳米流体对流换热的多种因素,提出了计算纳米流体对流换热系数的关联式。  相似文献   

4.
将高传热性能的Cu-水纳米流体作为换热工质引入射流冲击冷却技术,设计并搭建了射流冲击冷却系统,测试了该系统的换热性能和系统压降,研究了纳米粒子体积份额、入口射流速度以及射流冲击高度对系统换热性能的影响。实验结果表明,在液体中添加纳米粒子、增加射流速度、选取合适的射流冲击高度可以有效提高射流冲击冷却效果,且少量纳米粒子的加入并未引起系统压降的明显变化。  相似文献   

5.
纳米流体强化传热研究   总被引:71,自引:5,他引:66  
本文通过在液体中添加纳米级金属或金属氧化物粒子,研制了一种新型传热冷却工质—纳米流体,并对纳米流体的悬浮稳定性和均匀性进行了研究,给出的纳米流体电镜照片显示了悬浮液具有较高的分散性、稳定性;同时,介绍了纳米流体导热系数的理论分析方法,运用瞬态热线法测定了不同种类、不同体积份额配比的纳米流体的导热系数,分析了纳米粒子属性、份额、形状和尺度等因素对纳米流体导热系数的影响。  相似文献   

6.
实验制备了稳定性良好的SiO_2-导热油纳米流体,通过旋转黏度计对纳米流体的黏度进行了测量,研究了旋转黏度计转速、纳米颗粒体积分数以及温度对纳米流体黏度的影响。结果表明随着纳米SiO_2体积分数增加,纳米流体黏度迅速增加,且逐渐从牛顿流体转变为非牛顿流体;而随着温度的升高,纳米流体黏度迅速减小。通过对实验数据的分析,提出了SiO_2-导热油纳米流体黏度计算经验公式。  相似文献   

7.
郭亚丽  徐鹤函  沈胜强  魏兰 《物理学报》2013,62(14):144704-144704
利用格 子 Boltzmann方法模拟矩形腔内纳米流体Rayleigh-Benard对流, 得到温度场和流线分布, 比较分析不同Ra数、体积分数、粒径下纳米流体对流换热的变化情况. 结果表明: 在相同的Ra 数和体积分数下, 纳米流体的对流换热随着粒径的增大而减弱; 在相同的Ra数和粒径下, 纳米流体的对流换热随着体积分数增大而增强. 关键词: 纳米流体 Raleigh-Benard 多相流 格子Boltzmann方法  相似文献   

8.
成功建立了流体流动阻力和换热性能测试实验台,在45℃的流体温度下,对不同铜粒子体积分数和基液浓度的纳米流体在湍流状态下的对流换热特性和流动阻力进行了实验测量。实验结果表明:黏弹性流体基液中添加纳米粒子后,在降低对应基液减阻率的同时能明显增强传热性能.例如,将1.0%体积分数的铜纳米粒子添加到质量分数为6×10~(-4)的基液中所形成的黏弹性流体基纳米流体其综合性能指数K=0.47,表现了很好的传热强化和减阻性能.  相似文献   

9.
温度对纳米通道内流体的流动有显著的作用。运用分子动力学方法,模拟了不同温度下气体混合物在纳米通道内的Poiseuille流动。结果表明:气体混合物化学成分和物理结构都是非均匀的,固壁附近亲水粒子密度随着温度的升高而降低,疏水粒子随着温度的升高逐渐能够到达固壁附近。纳米通道内混合气体在温度较低时有明显的分层现象,而随着温度的升高,密度分布趋于一致。同时在固体壁面从温度较低时的无表观滑移到表观滑移速度随着温度的升高而逐渐增大,而在通道中心混合气体的流动速度随着温度的升高而降低。  相似文献   

10.
采用正交实验方法考察了具有不同结构参数的三维周期波纹流道中的流体性能,并采用Webb评价方法对其进行性能评价。比较了不同波纹宽度的波纹流道的阻力因子ef、传热因子eNu和能效因子η的值,结果表明三者都随Re的增大而增大,波纹宽度最小时能效因子η最大。流体在波纹流道中垂直于主流方向的横截面上产生二次流,随着Re增大,二次流增强,阻力增大,温度边界层减薄,温度等值线分布变得不均匀,传热增强。采用拉格朗日粒子跟踪技术分析了不同Re下,流体粒子在波纹流道内的运动轨迹,绘制了不同周期出口流体粒子的庞加莱截面图,结果表明流体粒子在波纹流道中被反复拉伸和折叠,增加了流体粒子的接触面积,提高混合效率,强化了传热。  相似文献   

11.
A model for predicting the effective thermal conductivity of nanofluids is proposed. It has been documented that the interfacial layer at the solid (particle)/liquid interface and particle size is one of the major mechanisms for enhancing the thermal conductivity of nanofluids. Comparing with other classical models, the proposed model takes into account some additional effects including volume fraction, thickness, thermal conductivity of the interfacial layer and particle size. The proposed model is found to be better than the existing models since the predicted effective thermal conductivity of different types of nanofluids are closer to the experimental results.  相似文献   

12.
针对纳米流体在微小尺度传热领域的应用,在常压下对微槽道中纳米流体的流动沸腾临界热流密度进行实验研究。分别以体积浓度为0.2%、0.5%的水基Al2O3纳米流体为工质进行试验,研究不同质量流速、槽道尺寸以及体积浓度等因素对沸腾CHF的影响。对比水为工质实验结果,表明:槽道尺寸、质量流速对于水-Al2O3纳米流体和纯水的CHF影响一致。其它参数一定的工况下,纳米流体CHF比纯水大,且随着纳米流体体积浓度增大,出口壁面过热度会增大。最后介绍一个微槽道沸腾CHF的预测模型,在评价其不足的基础上提出一个关于CHF的预测公式,与实验数据进行对比,验证该公式的适用性。  相似文献   

13.
This work presents a cell model for predicting the thermal conductivity of nanofluids. Effects due to the high specific surface area of the mono-dispersed nanoparticles and the micro-convective heat transfer enhancement associated with the Brownian motion of particles are addressed in detail. Novelty of the paper lies in its prediction of the non-linear dependence of thermal conductivity of nanofluids on particle volume fraction at low particle concentrations. The model is found to correctly predict the trends observed in experimental data over a wide range of particle sizes, temperatures and particle concentrations.  相似文献   

14.
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50–50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.  相似文献   

15.
16.
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.  相似文献   

17.
Nanofluid is a colloidal solution of nanosized solid particles in liquids. Nanofluids show anomalously high thermal conductivity in comparison to the base fluid, a fact that has drawn the interest of lots of research groups. Thermal conductivity of nanofluids depends on factors such as the nature of base fluid and nanoparticle, particle concentration, temperature of the fluid and size of the particles. Also, the nanofluids show significant change in properties such as viscosity and specific heat in comparison to the base fluid. Hence, a theoretical model becomes important in order to optimize the nanofluid dispersion (with respect to particle size, volume fraction, temperature, etc.) for its performance. As molecular dynamic simulation is computationally expensive, here the technique of Brownian dynamic simulation coupled with the Green Kubo model has been used in order to compute the thermal conductivity of nanofluids. The simulations were performed for different concentration ranging from 0.5 to 3 vol%, particle size ranging from 15 to 150 nm and temperature ranging from 290 to 320 K. The results were compared with the available experimental data, and they were found to be in close agreement. The model also brings to light important physical aspect like the role of Brownian motion in the thermal conductivity enhancement of nanofluids.  相似文献   

18.
基于团聚理论的纳米制冷剂导热系数预测方法   总被引:2,自引:0,他引:2  
纳米流体中纳米颗粒以团聚体的形式存在.为预测纳米流体的导热系数,模拟了流体中纳米颗粒团聚体的三维空间结构并用热阻网络法计算了团聚体的导热系数.在得到团聚体的导热系数与考虑液体分子吸附层后团聚体的体积分数后,预测纳米流体的导热系数.用实验数据验证了该预测方法并运用该方法预测了铜-R22纳米制冷剂的导热系数.  相似文献   

19.
杨伟国  钟诚  夏辉 《物理学报》2014,63(21):214705-214705
本文利用浓悬浮液中渗透性颗粒的短时扩散动力学数值模拟的结论,并结合Cohen-de Schepper近似和Percus-Yevick近似,研究了不同粒径渗透性颗粒的有效扩散系数随体积分数和渗透率的变化关系. 结果表明:对于浓悬浮液中一定粒径的渗透性颗粒,其扩散系数随渗透率的增加而增加,随体积分数的增加而减少;具有相同粒径与流体动力学屏蔽深度比值且波数较大的渗透性颗粒,其粒径对扩散的影响可以忽略. 关键词: 渗透性颗粒 有效扩散系数 体积分数 布朗运动短时区域  相似文献   

20.
Magnetic nanofluids, ferrofluids, are a special category of smart nanomaterials, consisting of stable dispersion of magnetic nanoparticles in different fluids. In this study, magnetic nanoparticles of hematite, α-Fe2O3, were prepared by solvothermal method using Fe(NO3)3 as a starting material. The nanoparticles were characterized by X-ray diffraction (XRD) and transmission electronic microscope (TEM).To the best of our knowledge, this is the first research on the rheological properties of nanofluids of α-Fe2O3 nanoparticles and glycerol. The experimental results showed that the viscosity of α-Fe2O3-glycerol nanofluids increases with increasing the particle volume fraction and decreases with increasing temperature. Our results clearly showed that the α-Fe2O3-glycerol nanofluids are non-Newtonian shear-thinning and their shear viscosity depends strongly on temperature. The experimental data were compared with some theoretical models. The measured values of the effective viscosity of nanofluids are underestimated by the theoretical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号