首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3-VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3-MH and CH2=MH2) along with the methylidyne trihydride anion complexes (CHMH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds.  相似文献   

2.
A photoreversible transition-metal methylidene system has been formed for the first time by reaction of methyl fluoride and laser-ablated Zr atoms, isolated in solid argon, and investigated by means of infrared spectroscopy. Four different groups of absorptions are characterized on the basis of behaviors upon broad-band irradiation and sample annealing. Growth of Group I is accompanied by demise of Group II on irradiation with visible light (lambda > 530 nm) and vice versa with UV light (240 < lambda < 380 nm). The methylidene complex CH(2)=ZrHF is responsible for Groups I and II either in different singlet-triplet spin states or argon matrix packing configurations. The ground singlet state is stabilized by an agostic interaction. On the other hand, Group III, which arises from the Grignard type compound CH(3)-ZrF, disappears upon irradiation of UV light (lambda > 380 nm), increasing the concentration of CH(2)=ZrHF by alpha-H elimination. Fragments of methyl fluoride such as the CH(2)F radical comprise Group IV. Theoretical calculations are carried out for the alkylidene complex and other plausible products, and the results are compared with the experimental frequencies.  相似文献   

3.
Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy.  相似文献   

4.
Infrared spectrum and bonding in uranium methylidene dihydride, CH2=UH2   总被引:1,自引:0,他引:1  
Uranium atoms activate methane upon ultraviolet excitation to form the methyl uranium hydride CH3-UH, which undergoes alpha-H transfer to produce uranium methylidene dihydride, CH2=UH2. This rearrangement most likely occurs on an excited-quintet potential-energy surface and is followed by relaxation in the argon matrix. These simple U+CH4 reaction products are identified through isotopic substitution (13CH4, CD4, CH2D2) and density functional theory frequency and structure calculations for the strong U-H stretching modes. Relativistic multiconfiguration (CASSCF/CASPT2) calculations substantiate the agostic distorted C1 ground-state structure for the triplet CH2=UH2 molecule. We find that uranium atoms are less reactive in methane activation than thorium atoms. Our calculations show that the CH2=UH2 complex is distorted more than CH2=ThH2. A favorable interaction between the low energy open-shell U(5f) sigma orbital and the agostic hydrogen contributes to the distortion in the uranium methylidene complexes.  相似文献   

5.
Reaction of laser-ablated Mo atoms with CH(4) in excess argon forms the CH(3)-MoH, CH(2)=MoH(2), and CH(triple bond)MoH(3) molecules, which are identified from infrared spectra by isotopic substitution and density functional theory frequency calculations. These simple methyl, methylidene, and methylidyne molybdenum hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. The methylidene dihydride CH(2)=MoH(2) exhibits CH(2) and MoH(2) distortion and agostic interaction to a lesser degree than CH(2)=ZrH(2). Molybdenum methylidyne trihydride CH(triple bond)MoH(3) is a stable C(3v) symmetry molecule.  相似文献   

6.
Reactions of laser-ablated group 3 metal atoms with methyl halides have been carried out in excess of Ar during condensation and the matrix infrared spectra studied. The metals are as effective as other early transition metals in providing insertion products (CH3-MX) and higher oxidation state methylidene complexes (CH2-MHX) (X = F, Cl, Br) following alpha-hydrogen migration. Unlike the cases of the group 4-6 metals, the calculated methylidene complex structures show little evidence for agostic distortion, consistent with the previously studied group 3 metal methylidene hydrides, and the C-M bond lengths of the insertion and methylidene complexes are comparable to each other. However, the C-Sc bond lengths are 0.013, 0.025, and 0.029 A shorter for the CH2-ScHX complexes, respectively, and the spin densities are consistent with weak C(2p)-Sc(3d) pi bonding. The present results reconfirm that the number of valence electrons on the metal is important for agostic interaction in simple methylidene complexes.  相似文献   

7.
Andrews L  Cho HG  Wang X 《Inorganic chemistry》2005,44(13):4834-4842
Laser-ablated titanium atoms react with methane to form the insertion product CH3TiH, which undergoes a reversible photochemical alpha-H transfer to give the methylidene complex CH2=TiH2. On annealing a second methane activation occurs to produce (CH3)2TiH2. These molecules are identified from matrix infrared spectra by isotopic substitution (CH4, 13CH4, CD4, CH2D2) and comparison to DFT frequency calculations. The computed planar structure for singlet ground-state CH2=TiH2 shows CH2 distortion and evidence for agostic bonding (H-C-Ti, 91.4 degrees), which is supported by the spectra for CHD=TiHD.  相似文献   

8.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes.  相似文献   

9.
The simple methylidene and methylidyne complexes (CH2=MHX and CH[triple bond]MH2X; X = F, Cl, Br, and I) are prepared in reactions of laser-ablated Mo and W atoms with the methyl halides and investigated by matrix infrared spectroscopy and density functional theory calculations. These complex structures are photoreversible: visible irradiation converts the methylidene complex to the methylidyne complex, and UV irradiation reverses this effect via alpha-hydrogen migration. While the higher oxidation state complexes are readily formed regardless of halogen size, the Mo methylidyne complex is relatively less favored with increasing halogen size, and the W complex shows the opposite tendency. The group 6 metal methylidenes are predicted to have the most agostically distorted structures among the early transition-metal methylidenes. The computed carbon-metal bond shortens with increasing halogen size for both the methylidene and methylidyne complexes. Harmonic and anharmonic frequencies computed by DFT converge on the experimental values and thus provide support for the identification of these new Mo and W complexes.  相似文献   

10.
The reactions between uranium atoms and CH3X (X = F, Cl, and Br) molecules are investigated in a solid argon matrix. The major products formed on ultraviolet irradiation are the CH2=UHX methylidene complexes. DFT calculations predict these triplet ground-state structures to be stable and to have significant agostic interactions. Parallels between the uranium and analogous thorium methylidene complexes are discussed.  相似文献   

11.
Lyon JT  Andrews L 《Inorganic chemistry》2007,46(12):4799-4808
Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.  相似文献   

12.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product.  相似文献   

13.
Formation and characterization of thorium methylidene CH2=ThHX complexes   总被引:1,自引:0,他引:1  
Lyon JT  Andrews L 《Inorganic chemistry》2005,44(23):8610-8616
Laser-ablated thorium atoms react with methyl fluoride to give the CH2=ThHF molecule as the major product observed and trapped in solid argon. Infrared spectroscopy, isotopic substitution, and density functional theoretical frequency calculations confirm the identification of this methylidene complex. The four strongest computed absorptions (Th-H stretch, Th=C stretch, CH2 wag, and Th-F stretch) are the four vibrational modes observed. The CH2=ThHCl and CH2=ThHBr species formed from methyl chloride and methyl bromide exhibit the first three of these modes in the infrared spectra. The computed structures (B3LYP and CCSD) show considerable agostic interaction, similar to that observed for the Group 4 CH2=MHX (M = Ti, Zr, Hf) methylidene complexes, and the agostic angle and C=Th bond length decrease slightly in the CH2=ThHX series (X = F, Cl, Br).  相似文献   

14.
Tetranuclear cubane-type rare-earth methylidene complexes consisting of four "Cp'LnCH(2)" units, [Cp'Ln(μ(3)-CH(2))](4) (4-Ln; Ln = Tm, Lu; Cp' = C(5)Me(4)SiMe(3)), have been obtained for the first time through CH(4) elimination from the well-defined polymethyl complexes [Cp'Ln(μ(2)-CH(3))(2)](3) (2-Ln) or mixed methyl/methylidene precursors such as [Cp'(3)Ln(3)(μ(2)-Me)(3)(μ(3)-Me)(μ(3)-CH(2))] (3-Ln). The reaction of the methylidene complex 4-Lu with benzophenone leads to C═O bond cleavage and C═C bond formation to give the cubane-type oxo complex [Cp'Lu(μ(3)-O)](4) and CH(2)═CPh(2), while the methyl/methylidene complex 3-Tm undergoes sequential methylidene addition to the C═O group and ortho C-H activation of the two phenyl groups of benzophenone to afford the bis(benzo-1,2-diyl)ethoxy-chelated trinuclear complex [Cp'(3)Tm(3)(μ(2)-Me)(3){(C(6)H(4))(2)C(O)Me}] (6-Tm).  相似文献   

15.
Irradiation with a mercury lamp at 254 nm of a p-H(2) matrix containing CH(3)I and SO(2) at 3.3 K, followed by annealing of the matrix, produced prominent features at 633.8, 917.5, 1071.1 (1072.2), 1272.5 (1273.0, 1273.6), and 1416.0 cm(-1), attributable to ν(11) (C-S stretching), ν(10) (CH(3) wagging), ν(8) (SO(2) symmetric stretching), ν(7) (SO(2) antisymmetric stretching), and ν(4) (CH(2) scissoring) modes of methylsulfonyl radical (CH(3)SO(2)), respectively; lines listed in parentheses are weaker lines likely associated with species in a different matrix environment. Further irradiation at 365 nm diminishes these features and produced SO(2) and CH(3). Additional features at 1150.1 and 1353.1 (1352.7) cm(-1) are tentatively assigned to the SO(2) symmetric and antisymmetric stretching modes of ISO(2). These assignments are based on comparison of observed vibrational wavenumbers and (18)O- and (34)S-isotopic shifts with those predicted with the B3P86 method. Our results agree with the previous report of transient IR absorption bands of gaseous CH(3)SO(2) at 1280 and 1076 cm(-1). These results demonstrate that the cage effect of solid p-H(2) is diminished so that CH(3) radicals, produced via UV photodissociation of CH(3)I in situ, might react with SO(2) to form CH(3)SO(2) during irradiation and upon annealing. Observation of CH(3)SO(2) but not CH(3)OSO is consistent with the theoretical predictions that only the former reactions proceed via a barrierless path.  相似文献   

16.
Protonolysis of the dimethylrhenium(III) compound Cp(PMe(3))(2)Re(CH(3))(2) (3) led to formation of the highly reactive hydridorhenium methylidene compound [Cp(PMe(3))(2)Re(CH(2))(H)][OTf] (4), which was characterized spectroscopically at low temperature. Although 4 decomposed above -30 degrees C, reactivity studies performed at low temperature indicated it was in equilibrium with the coordinatively unsaturated methylrhenium complex [Cp(PMe(3))(2)Re(CH(3))][OTf] (2). Methylidene complex 4 was found to react with PMe(3) to afford [Cp(PMe(3))(3)Re(CH(3))][OTf] (6) and with chloride anion to give Cp(PMe(3))(2)Re(Me)Cl (7). When BAr(f) anion was added to 4, the thermally stable methylrhenium methylidene complex [Cp(PMe(3))(2)Re(CH(2))(CH(3))][BAr(f)] (8) was isolated upon warming to room temperature. The mechanisms of formation of both 4 and 8 are discussed in detail, including DFT calculations. The novel carbonyl ligated complex Cp(CO)(2)Re(CH(3))OTf (12) was prepared, isolated, and found to not undergo migration reactions to form methylidene complexes.  相似文献   

17.
Cho HG  Andrews L 《Inorganic chemistry》2011,50(20):10319-10327
Reactions of laser-ablated, excited group 11 metal atoms with CH(3)F isotopomers have been carried out, leading to the generation of CH(3)-MF and CH(2)F-M complexes for Cu, Ag, and Au in addition to smaller complexes for gold. The products in the infrared spectra identified on the basis of their frequencies, isotopic shifts, and correlation with DFT calculated frequencies reveal that M-F insertion by the coinage metals and H atom release readily occur. The relatively low dissociation energies of CH(3)-AuF to give several smaller Au complexes are consistent with the observation of these fragments. The C-Au bonds of CF-AuH and CH(2)-AuF exhibit considerable π character, and the methylidene CH(2)-AuF contains a true double bond. In contrast, the bond orders of CH(2)-Au and CH(2)-AuH are lower, indicating that F bonded to Au contracts the gold 5d orbitals for better overlap with the carbon 2p orbital for π bonding.  相似文献   

18.
Infrared spectrum and structure of CH2=ThH2   总被引:1,自引:0,他引:1  
The actinide methylidene CH2=ThH2 molecule is formed in the reaction of laser-ablated thorium atoms with CH4 and trapped in a solid argon matrix. The five strongest infrared absorptions computed by density functional theory (two ThH2 stretches, C=Th stretch, CH2 wag, and ThH2 bend) are observed in the infrared spectrum. The computed structure shows considerable agostic bonding distortion of the CH2 and ThH2 subunits in the simple actinide methylidene dihydride CH2=ThH2 molecule, which is similar to the transition metal analogue, CH2=HfH2.  相似文献   

19.
Methane activation by laser-ablated, excited Group 11 metal atoms has been carried out, leading to generation of CH(3)-MH, CH(3)-M, and CH(3)-MH(-), which are identified in the product infrared spectra on the basis of isotopic shifts and correlation with DFT calculated frequencies. The products reveal that C-H insertion by excited Au, Ag, and Cu readily occurs, and subsequent hydride-detachment or electron addition also follows. Each type of product has similar photochemical properties regardless of the metal. DFT computed energies reveal facile hydride dissociation and high electron affinities for the insertion complexes. The methyl metal species have the shortest C-M bonds, consistent with their highest calculated effective bond order, and the CH(3)-MH complexes have higher electron affinities than the metal atoms.  相似文献   

20.
The reactions of niobium and tantalum monoxides and dioxides with methane have been investigated using matrix isolation infrared spectroscopic and theoretical calculations. The niobium and tantalum oxide molecules were prepared by laser evaporation of Nb(2)O(5) and Ta(2)O(5) bulk targets. The niobium monoxide molecule interacted with methane to form the ONb(CH(4)) complex, which was predicted to have C(3)(v)() symmetry with the metal atom coordinated to three hydrogen atoms of the methane molecule. The ONb(CH(4)) complex rearranged to the CH(3)Nb(O)H isomer upon 300 nm < lambda < 580 nm irradiation. The analogous OTa(CH(4)) complex was not observed, but the CH(3)Ta(O)H molecule was produced upon UV irradiation. The niobium and tantalum dioxide molecules reacted with methane to form the O(2)Nb(CH(4)) and O(2)Ta(CH(4)) complexes with C(s)() symmetry, which underwent photochemical rearrangement to the CH(3)Nb(O)OH and CH(3)Ta(O)OH isomers upon ultraviolet irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号