首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the F?rster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.  相似文献   

2.
A simple "mix-and-detect" type of fluorescence sensor for cholera toxin (CT) is reported. The sensor consists of a BODIPY lipid dye and polydiacetylene (PDA) vesicles and utilizes the lipid insertion and FRET mechanism to offer a direct and fluorescence "turn-on" detection of the analyte. BODIPY conjugated GM1, dissolved in a Tris buffer through aggregate formation, demonstrated substantial fluorescence quenching with addition of PDA vesicle solution. The close proximity of the dye molecules to the conjugated chains as a result of lipid insertion enables energy transfer from dye to the polymer backbone, yielding the observed phenomenon. When CT is present, the binding of BO-GM1 to CT results in formation of a complex that prohibits it from membrane insertion, leading to the blocking of the quenching process. The fluorescence signal was found to be proportional to the CT concentration. The method is very simple and allows specific and sensitive detection of the protein toxin with just a few mixing steps. It can be further developed into a general sensing strategy for detection of other proteins with amplified FRET mechanism.  相似文献   

3.
We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption ex-perimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to en-ergy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.  相似文献   

4.
Encapsulating a xanthene dye in phospholipid vesicles produces vesicle solutions that contain dye at very high microscopic concentrations, but have a low overall optical density, thereby eliminating reabsorption. Using this system, we have studied the effects of concentration on the fluorescence lifetime of one such dye, sulforhodamine 101. We have observed that the lifetime decreases as a function of encapsulated dye concentration, which is indicative of collisional quenching. The lifetime decreases from 4.5 nsec for sulforhodamine in dilute aqueous solution to 0.69 ns at an encapsulated concentration of 33 m M . The bimolecular rate constant for this event is 2.6 1010 M -1 s-1, consistent with a diffusion controlled event. However, the quenching constant calculated from changes in intensity is 2.2 1011 M -1 s-1. Thus, collisional quenching is not the predominant mechanism of quenching. The absorption spectra of dye in vesicles indicate an important contribution from static complex formation. Förster distance calculations indicate that energy transfer can also occur to a significant extent, with a predicted efficiency of transfer of 34% at a dye concentration of only 1 m M  相似文献   

5.
Amplified quenching of a conjugated polyelectrolyte by cyanine dyes   总被引:2,自引:0,他引:2  
The conjugated polyelectrolyte PPESO3 features a poly(phenylene ethynylene) backbone substituted with anionic 3-sulfonatopropyloxy groups. PPESO3 is quenched very efficiently (KSV > 10(6) M(-1)) by cationic energy transfer quenchers in an amplified quenching process. In the present investigation, steady-state and picosecond time-resolved fluorescence spectroscopy are used to examine amplified quenching of PPESO3 by a series of cyanine dyes via singlet-singlet energy transfer. The goal of this work is to understand the mechanism of amplified quenching and to characterize important parameters that govern the amplification process. Steady-state fluorescence quenching of PPESO3 by three cationic oxacarbocyanine dyes in methanol solution shows that the quenching efficiency does not correlate with the Forster radius computed from spectral overlap of the PPESO3 fluorescence with the cyanines' absorption. The quenching efficiency is controlled by the stability of the polymer-dye association complex. When quenching studies are carried out in water where PPESO3 is aggregated, changes observed in the absorption and fluorescence spectra of 1,1',3,3,3',3'-hexamethylindotricarbocyanine iodide (HMIDC) indicate that the polymer templates the formation of a J-aggregate of the dye. The fluorescence dynamics in the PPESO3/HMIDC system were probed by time-resolved upconversion and the results show that PPESO3 to HMIDC energy transfer occurs on two distinctive time scales. At low HMIDC concentration, the dynamics are dominated by an energy transfer pathway with a time scale faster than 4 ps. With increasing HMIDC concentration, an energy pathway with a time scale of 0.1-1 ns is active. The prompt pathway (tau < 4 ps) is attributed to quenching of delocalized PPESO3 excitons created near the HMIDC association site, whereas the slow phase is attributed to intra- and interchain exciton diffusion to the HMIDC.  相似文献   

6.
To examine the quenching of a triplet exciton by low triplet energy (E(T)) polymer hosts with different chain configurations for high E(T) phosphor guests, the quenching rate constant measurements were carried out and analyzed by the standard Stern-Volmer equation. We found that an effective shielding of triplet energy transfer from a high E(T) phosphor guest to a low E(T) polymer host is possible upon introducing dense side chains to the polymer to block direct contact from the guest such that the possibility of Dexter energy transfer between them is reduced to a minimum. Together with energy level matching to allow charge trapping on the guest, high device efficiency can be achieved. The extent of shielding for the systems of phenylene-based conjugated structures from iridium complexes follows the sequence di-substituted (octoxyl chain) in the para position (dC8OPPP) is greater than monosubstituted (mC8OPPP) and the PPPs with longer side chains are much higher than a phenylene tetramer (P4) with two short methyl groups. Further, capping the dialkoxyl-susbstituents with a carbazole (Cz) moiety (CzPPP) provides enhanced extent of shielding. Excellent device efficiency of 30 cd/A (8.25%) for a green electrophosphorescent device can be achieved with CzPPP as a host, which is higher than that of dC8OPPP as host (15 cd/A). The efficiency is higher than those of high E(T) conjugated polymers, poly(3,6-carbazole) derivatives, as hosts (23 cd/A). This observation suggests a new route for molecular design of electroluminescent polymers as a host for a phosphorescent dopant.  相似文献   

7.
A sophisticated model of the natural light-harvesting antenna has been devised by decorating a C(60) hexa-adduct with ten yellow and two blue boron dipyrromethene (Bodipy) dyes in such a way that the dyes retain their individuality and assist solubility of the fullerene. Unusually, the fullerene core is a poor electron acceptor and does not enter into light-induced electron-transfer reactions with the appended dyes, but ineffective electronic energy transfer from the excited-state dye to the C(60) residue competes with fluorescence from the yellow dye. Intraparticle electronic energy transfer from yellow to blue dyes can be followed by steady-state and time-resolved fluorescence spectroscopy and by excitation spectra for isolated C(60) nanoparticles dissolved in dioxane at 293 K and at 77 K. The decorated particles can be loaded into polymer films by spin coating from solution. In the dried film, efficient energy transfer occurs such that photons absorbed by the yellow dye are emitted by the blue dye. Films can also be prepared to contain C(60) nanoparticles loaded with the yellow Bodipy dye but lacking the blue dye and, under these circumstances, electronic energy migration occurs between yellow dyes appended to the same nanoparticle and, at higher loading, to dye molecules on nearby particles. Doping these latter polymer films with the mixed-dye nanoparticle coalesces these multifarious processes in a single system. Thus, long-range energy migration occurs among yellow dyes attached to different particles before trapping at a blue dye. In this respect, the film resembles the natural photosynthetic light-harvesting complexes, albeit at much reduced efficacy. The decorated nanoparticles sensitize amorphous silicon photocells.  相似文献   

8.
The influence of gold nanoparticles (diameter of about 2.5 nm) on the complex between the SYBRGreen dye and double-stranded DNA in solutions has been investigated by fluorescence spectroscopy. Strong quenching of dye fluorescence by nanosized gold particles (??superquenching??), characterized by a high Stern-Volmer constant of K SV ?? 3.3 × 107 L/mol, has been found. The superquenching effect in the test system is explained in terms of contribution of several processes: electron transfer, formation of aggregates of gold nanoparticles involving dye dications, and enhancement of intersystem crossing by a heavy atom (gold atoms of nanoparticles).  相似文献   

9.
Conjugated polymer nanoparticles based on poly[9,9‐bis(2‐ethylhexyl)fluorene] and poly[N‐(2,4,6‐trimethylphenyl)‐N,N‐diphenylamine)‐4,4′‐diyl] are fabricated using anionic surfactant sodium dodecylsulphate in water by miniemulsion technique. Average diameters of polyfluorene and polytriarylamine nanoparticles range from 70 to 100 and 100 to 140 nm, respectively. The surface of the nanoparticles is decorated with triplet emitting dye, tris(2,2′‐bipyridyl)ruthenium(II) chloride. Intriguing photophysics of aqueous dispersions of these hybrid nanoparticles is investigated. Nearly 50% quenching of fluorescence is observed in the case of dye‐coated polyfluorene nanoparticles; excitation energy transfer is found to be the dominant quenching mechanism. On the other hand, nearly complete quenching of emission is noticed in polytriarylamine nanoparticle‐dye hybrids. It is proposed that the excited state electron transfer from the electron‐rich polytriarylamine donor polymer to Ru complex leads to the complete quenching of emission of polytriarylamine nanoparticles. The current study offers promising avenues for developing aqueous solution processed‐electroluminescent devices involving a conjugated polymer nanoparticle host and Ru or Ir‐based triplet emitting dye as the guest.

  相似文献   


10.
荧光光谱法研究茶碱与牛血清白蛋白的相互作用   总被引:10,自引:0,他引:10  
荧光光谱法研究茶碱与牛血清白蛋白的相互作用;茶碱;牛血清白蛋白;荧光猝灭;能量转移  相似文献   

11.
Understanding fluorescence quenching processes of organic dyes by biomolecular compounds is of fundamental importance for in-vitro and in-vivo fluorescence studies. It has been reported that the excited singlet state of some oxazine and rhodamine derivatives is efficiently and almost exclusively quenched by the amino acid tryptophan (Trp) and the DNA base guanine via photoinduced electron transfer (PET). We present a detailed analysis of the quenching interactions between the oxazine dye MR121 and Trp in aqueous buffer. Steady-state and time-resolved fluorescence spectroscopy, together with fluorescence correlation spectroscopy (FCS), reveal three contributing quenching mechanisms: 1) diffusion-limited dynamic quenching with a bimolecular quenching rate constant k(d) of 4.0 x 10(9) s(-1) M(-1), 2) static quenching with a bimolecular association constant K(s) of 61 M(-1), and 3) a sphere-of-action contribution to static quenching described by an exponential factor with a quenching constant lambda of 22 M(-1). The latter two are characterized as nonfluorescent complexes, formed with approximately 30 % efficiency upon encounter, that are stable for tens of nanoseconds. The measured binding energy of 20-30 kJ mol(-1) is consistent with previous estimates from molecular dynamics simulations that proposed stacked complexes due to hydrophobic forces. We further evaluate the influence of glycerol and denaturant (guanidine hydrochloride) on the formation and stability of quenched complexes. Comparative measurements performed with two other dyes, ATTO 655 and Rhodamine 6G show similar results and thus demonstrate the general applicability of utilizing PET between organic dyes and Trp for the study of conformational dynamics of biopolymers on sub-nanometer length and nanosecond time-scales.  相似文献   

12.
桔皮苷与牛血清白蛋白相互作用的研究   总被引:13,自引:3,他引:10  
运用荧光光谱、紫外光谱法研究了桔皮苷与牛血清白蛋白(BSA)的相互作用。桔皮苷分子与BSA作用导致BSA内源荧光猝灭,猝灭机理主要为静态猝灭,并存在非辐射能量转移。测定了不同温度下该反应的结合常数、结合位点数及结合热力学参数。结果表明:桔皮苷与BSA之间主要为氢键或范德华作用力,作用过程是一个熵增加、自由能降低的自发分子间作用过程;测得了供体与受体间结合距离r和能量转移效率E;并用同步荧光技术考察了桔皮苷对BSA构象的影响。  相似文献   

13.
Photoinduced electron transfer from N,N-dimethylaniline to different Coumarin dyes has been investigated in dodecyl trimethyl ammonium bromide (DTAB) micelles and in Bovine serum albumin (BSA)-DTAB protein-surfactant complex using steady-state and picosecond time-resolved fluorescence spectroscopy. We observed a slower fluorescence quenching rate in the DTAB micelles and in the protein-surfactant complex as compared to that in pure acetonitrile solution. Moreover, the observed fluorescence quenching in BSA-DTAB complex was found to be slower than that in DTAB micelles. In the correlation of free-energy change with the fluorescence quenching constant we observed a deviation in the fluorescence quenching electron transfer rate for Coumarin 151 (C-151) from the normal Marcus curve. This observation is ascribed to the stronger interaction of C-151 with the surfactant molecules present in the micelles. This is evident from the slower translation diffusion (D(L)) of Coumarin 151 compared to other probe molecules.  相似文献   

14.
The interaction of a zinc tetrasulfonated phthalocyanine with cytochrome c was studied using steady-state spectroscopic techniques and time-correlated single photon counting in water and Triton-X 100 micelles. The dye forms dimers in water with a high equilibrium constant (70 x 10(6) M(-1)). Because of a specific electrostatic interaction, the presence of cytochrome c does not lead to a dissociation of this dimer, but increases its formation, with an equilibrium constant of about 7.9 x 10(9) M(-1). Triton-X 100 micelles dissociate the dimer, creating two populations of dye molecules: one in a hydrophilic media, probably on the surface of the micelles, another on a hydrophobic environment, probably inside the micelles. However, when cytochrome c is added the dye aggregation is again induced leading to a strong fluorescence quenching. This fluorescence quenching may also be caused by a photoinduced electron-transfer due to the formation of a 1:1 complex between the dye and the protein, but the present work does not give direct evidence of such an effect because the fluorescence decays did not show the presence of an extra component. The results presented here are quite different from those reported for aluminum sulfonated phthalocyanines, where aggregation does not occur and the fluorescence quenching is solely due to photoinduced electron-transfer reactions.  相似文献   

15.
利用荧光能量转移设计高灵敏苦味酸光极膜   总被引:1,自引:0,他引:1  
利用荧光能量转移设计高灵敏苦味酸光极膜王柯敏,曾恚恚,俞汝勤(湖南大学化学化工系,长沙,410082)关键词荧光能量转移,光极,苦味酸基于稠环芳烃荧光熄灭的苦味酸光极膜[1a,2]在选择性方面优于传统苦味酸根离子电极,较适于实际应用,但在检测低浓度苦...  相似文献   

16.
New three‐component photoinitiating systems consisting of a cyanine dye, borate salt, and a 1,3,5‐triazine derivative were investigated by measuring their photoinitiation activities and through fluorescence quenching experiments. Polymerization kinetic studies based on the microcalorimetric method revealed a significant increase in polymerization rate when the concentration of n‐butyltriphenylborate salt or the 1,3,5‐triazine derivative were increased. The photo‐induced electron transfer process between electron donor and electron acceptor was studied by means of fluorescence quenching and SrEt change of the fluorescence intensity. The experiments performed documented that an increase of the n‐butyltriphenylborate salt concentration dramatically increases the rate of dye fluorescence quenching, whereas the increasing of the 1,3,5‐triazine derivative concentration slows down the consumption of the dye. We conclude that the primary photochemical reaction involves an electron transfer from the n‐butyltriphenylborate anion to the excited singlet state of the dye, followed by the reaction of the 1,3,5‐triazine derivative with the resulting dye radical to regenerate the original dye. This reaction simultaneously produces a triazinyl radical anion derived from the 1,3,5‐triazine, which undergoes the carbon‐halogen bond cleavage yielding radicals active in initiation of a free radical polymerization chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3626–3636, 2007  相似文献   

17.
利用荧光光谱法和紫外-可见光谱法研究了牡荆素(VT)与牛血清白蛋白(BSA)之间的相互作用.VT对BSA的荧光猝灭为动态猝灭过程,测定了不同温度下的猝灭常数;根据F(o)rster非辐射能量转移理论,计算出VT在BSA中的结合位置与色氨酸残基间的距离为2.675.nm;通过热力学参数推断出VT与BSA之间主要靠疏水作用...  相似文献   

18.
The influence of aggregates and solvent aromaticity on the photophysics and fluorescence dynamics of two conjugated polymers is studied. The two polymers are derivatives of poly(p-phenylene vinylene) (PPV) containing different kinked moieties along the main chain. The polymers contain 2,6-diphenylpyridine and m-terphenyl kinked moieties and they are abbreviated as PN and PC, respectively. The insertion of kinked segments along the main chain shifts the emission spectrum from the yellow-orange spectral region, common to PPV derivatives, to the blue-green spectral region. The results show that in dilute solutions the polymers decay monoexponentially, while in concentrated ones the fluorescence decays biexponentially, indicating fluorescence quenching. This is attributed to an energy transfer process from polymer chains to aggregates that occurs within a few tens of picoseconds. By comparing the photophysics and fluorescence dynamics of polymer PN in a nonaromatic and an aromatic solvent, we conclude that the polymer conformation adopted in the aromatic solvent leads to a higher fluorescence quantum yield and a longer fluorescence lifetime. Furthermore, the fluorescence quenching of PN because of aggregates is faster and more efficient in the aromatic than in the nonaromatic solvent. These results can be explained through a more extended chain conformation of PN in the aromatic solvent.  相似文献   

19.
A concept of fluorescent metal ion sensing with an easily tunable emission wavelength is presented and its principle demonstrated by detection of Cu(2+). A fluorescein dye was chemically modified with a metal chelating group and then attached to the terminus of ss-DNA. This was combined with a complementary ss-DNA modified with another fluorescent dye (ATTO 590), emitting at a longer wavelength. In the assembled duplex, fluorescence resonance energy transfer (FRET) between the fluorescein donor (excited at 470 nm) and the ATTO 590 acceptor (emitting at 624 nm) is observed. Proper positioning within the rigid DNA double helix prevents intramolecular contact quenching of the two dyes. Coordination of paramagnetic Cu(2+) ions by the chelating unit of the sensor results in direct fluorescence quenching of the fluorescein dye and indirect (by loss of FRET) quenching of the ATTO 590 emission at 624 nm. As a result, emission of the acceptor dye can be used for monitoring of the concentration of Cu(2+), with a 20 nM detection limit. The emission wavelength is readily tuned by replacement of ATTO-DNA by other commercially available DNA-acceptor dye conjugates. Fluorescent metal ion sensors emitting at >600 nm are very rare. The possibility of tuning the emission wavelength is important with respect to the optimization of this sensor type for application to biological samples, which usually show broad autofluorescence at <550 nm.  相似文献   

20.
HCF(X1A') radicals were produced by laser photolysis of CHFBr2 at 213 nm and were electronically excited from the ground state to A1A'(030) at 492.7 nm with a dye laser pumped by a Nd:YAG laser. With the analysis of the lifetime of the time-resolved total fluorescence signals collected in the reaction cell where the total pressure was fixed to be 14.0 Torr, the quenching data of HCF(A1A') by alkane and alcohol molecules at room temperature were derived from variation of pseudo-first-order rate constant with different quencher pressures. It is found that the quenching rate constants are close to the collision rate constants (10(-10) cm3 molecule(-1) s(-1)), indicating the long-range attractive forces between the collision partners play an important role in the entrance channel of quenching process. Several kinetic models were applied to analyze the mechanism of the quenching process. The complex formation cross sections are calculated with the collision complex model. Correlations of the quenching rate constant for the removal of the HCF(A1A') state with ionization potential of the quenching partners show that the insertion reactive mechanism is probably the dominant reaction channel, which is analogous to the behaviors of other three-atom carbenes in corresponding electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号