首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton magnetic resonance imaging was performed on rats before induction of diabetes with streptozotocin (STZ) and at 2 and 12 days postinduction. Images revealed an increase in maximal longitudinal and axial dimensions of the kidneys at 2 days and a further increase at 12 days. Similarly, an increase in the size of the remaining kidney was seen in a rat which underwent uninephrectomy as a positive control. Two major differences were observed between the kidney undergoing compensatory hypertrophy and those developing diabetic nephropathy: (i) Expansion of the renal vasculature was seen only in images of the diabetic rat; (ii) A loss in conspicuity of the normal corticomedullary junction was seen in the T2-weighted images of the diabetic rat but not in the uninephrectomized rat. Histologic examination revealed that the medulla increased to a size greater than the cortex during diabetic nephropathy whereas the medullary volume was less than that of the cortex during compensatory hypertrophy. In vitro T1 relaxation times in cortex, outer medulla and inner medulla of kidneys from control rats were measured and compared with the same respective regions in diabetic rats. When these values were correlated with tissue water content, a linear increase in relaxation rate versus percent water content from cortex to inner medulla was found in the control kidneys, but this correlation was absent in diabetic nephropathy. These studies demonstrate that MRI is an effective noninvasive tool for studying the course of renal hypertrophy and hydration changes in the development of renal disease in STZ-induced diabetes in the rat.  相似文献   

2.
To investigate the ability of MRI to detect alterations due to renal ischemia, a rabbit renal artery stenosis (RAS) model was developed. Seven rabbits had RAS induced by surgically encircling the artery with a polyethylene band which had a lumen of 1 mm, 1 to 2 weeks prior to imaging. The stenosis was confirmed by angiography, and the rabbits were then imaged in a 1.4 T research MRI unit. T1 was calculated using four inversion recovery sequences with different inversion times. Renal blood flow, using 113Sn-microspheres, and regional water content by drying were then measured. The average T1 of the inner medulla was shorter for the ischemia (1574 msec) than for the contralateral kidney (1849 msec), while no change ws noted in the cortex. Ischemic kidneys had less distinct outer medullary zones on IR images with TI = 600 msec than did contralateral or control kidneys. Blood flow to both the cortex and medulla were markedly reduced in ischemic kidneys compared with contralateral kidneys (119.5 vs. 391 ml/min/100 gm for cortex and 19.8 vs. 50.8 ml/min/100 gm for medulla). Renal water and blood content were less affected. Our rabbit model of renal artery stenosis with MRI, radionuclide, and angiographic correlation has the potential to increase our understanding of MR imaging of the rabbit kidney.  相似文献   

3.
Enhanced-MR imaging in combination with ultrasmall superparamagnetic iron oxide (USPIO) was used in the glycerol-induced model of acute renal failure (ARF) in the rabbit to detect renal perfusion abnormalities. A control group (n = 5) and an ARF group (n = 5) were studied after intramuscular injection of glycerol (10 ml/kg) with T2-weighted spin-echo sequence at 1.5 T and a 27 μmol/kg IV dose of iron. The signal intensity (SI) was quantified in the cortex, the outer medulla (OM), and the inner medulla (IM). In control rabbits, the maximum SI decrease after USPIO injection was in the OM (76% ± 3.6), as this is the region of maximal vascular density, then in the IM (73.4% ± 2.9). In the glycerol group, SI loss in the OM (61% ± 12.6) and the IM (45.2% ± 16.24) was significant less than in the control group (p < .05). Pathology results showed fibrinous thrombus in the efferent arterioles and congestive aspect of the vasa recta in the medulla. We argue that a reduced medullary concentration of USPIO in the renal failure group is indicative of medullary hypoperfusion.  相似文献   

4.
GD HP-DO3A, a neutral (nonionic) IV MR contrast agent presently in clinical trials, was evaluated with respect to imaging characteristics in rats. Following administration of 0.25 mmol/kg I.V., 58 +/- 19%, i.e. (n = 6) enhancement was noted in a brain gliosarcoma model. Meningeal spread of neoplasia could be identified due to its enhancement (69 +/- 26%) in nine animals. The time course of renal enhancement was quantitated at two dosages, 0.05 (n = 4) and 0.25 mmol/kg (n = 8). At the higher dose, enhancement of both cortex and medulla plateaued between 9 and 23 min postinjection. At the lower dose, enhancement of renal medulla was maximum at 2 min postinjection. These enhancement characteristics (both brain and kidney), at equivalent contrast dosages, are comparable to that previously published for Gd-DTPA. However, Gd HP-DO3A has the potential to be utilized clinically at higher doses than Gd-DTPA, with no reported adverse effects in initial trials employing up to 0.3 mmol/kg.  相似文献   

5.
Quantitative perfusion imaging of human kidneys was performed using arterial spin labeling MRI with a fast spin echo readout-sequence. Perfusion maps of centrally located single slices were obtained in axial and coronal orientations. In ten healthy volunteers, the mean value of perfusion was 213+/-55 mL/(100g min) with a range from 140 to 319 mL/(100g min). These results are in accordance with literature data, considering the fact that FAIR only measures the perfusion component normal to the imaging plane. Intra-individual reproducibility errors of +/-11% were smaller than the natural interindividual variability of renal perfusion (SD = +/- 25%). Perfusion in the cortex was approximately 3-4 times higher compared to the medulla. Considering the relatively high resolution of 2x2x10 mm3, the ability to quantify perfusion, and the lack of ionizing radiation and contrast media, this technique should prove useful in diagnosing renal pathologies that are associated with reductions in tissue perfusion.  相似文献   

6.
PurposeTo investigate the utility of diffusion kurtosis imaging (DKI) MRI for evaluation of renal fibrosis in rats with unilateral ureteral obstruction (UUO).MethodsTwenty-five rats had UUO, and ten rats were subjected to sham operation as control. DKI was performed on a 3.0 T MRI scanner on days 1, 3, 5, and 7 after ligation. All rats then underwent 18F-FDG dynamic PET to evaluate unilateral renal function, followed by histological analysis to examine α-smooth muscle actin (α-SMA) expression. DKI metrics were assessed among the time points and between two sides, and compared with maximum standardized uptake value (SUVmax), serum levels of creatinine and urea, and fibrosis marker α-SMA.ResultsMean kurtosis (MK) on day 7, axial kurtosis (Ka) on days 3 and 7, mean diffusivity (MD) on days 1, 3, 5, and 7, and fractional anisotropy (FA) on days 3, 5, and 7 of cortex and medulla between the UUO and contralateral sides were significantly different (all p < 0.05). Over the course of UUO progression, there were significant changes in Ka, MD and FA of medulla (all p < 0.05). FA of medulla was positively correlated with SUVmax (r = 0.641, p < 0.001), and MD of cortex was negatively correlated with urea (r = −0.534, p = 0.001). MD of cortex was negatively correlated with α-SMA on UUO sides (r = −0.710, p < 0.001).ConclusionsDKI shows the potential for noninvasive assessment of renal fibrosis and unilateral renal function induced by UUO.  相似文献   

7.
To simplify the L-[1-13C]phenylalanine breath test which is used to assess liver function the tracer is usually given orally, and CO2 production rate is estimated. In 12 healthy volunteers and 10 liver cirrhotics we compared the oral approach with i.v. tracer administration combined with measurement of individual CO2 production rate. The 13CO2/12CO2 enrichment was assessed by isotope-ratio mass spectrometry. After i.v. [1-13C]phenylalanine application exhaled 13C recovery per minute peaked within 10 minutes (controls: 0.17 +/- 0.06%; cirrhotics: 0.05 +/- 0.02%, p < 0.01). The oral approach yielded comparable separation between 30-60 minutes, with average peak values being 0.18 +/- 0.03% and 0.06 +/- 0.03% (p < 0.01), respectively. Variable gastrointestinal resorption kinetics after oral application probably causes this difference.  相似文献   

8.
A dextran-Gd-DTPA compound has been recently synthesized utilizing 70,800 Da molecular weight dextran. This polymeric contrast agent for magnetic resonance imaging has been found chemically to be very stable and to demonstrate in vitro improved relaxivities of 1.5 to 2.3 times that of monomeric Gd-DTPA at 100 MHz. This MR experiment examines the in vivo distribution and relaxivity of the 70,800 Da molecular weight dextran-Gd-DTPA compound in a rabbit model by measuring the change in signal-to-noise ratio of a variety of organs (renal cortex, renal medulla, liver, brain, and torcula herophile) compared to the preinjection state. Results demonstrate prolonged (beyond 60 min) enhancement of the renal cortex, renal medulla, liver and torcula, and no enhancement of brain parenchyma.  相似文献   

9.
Renal cortical, medullar and papillary T1 and T2 relaxation times were measured in rats with normal (n = 13) and impaired renal function (n = 11) with a Bruker Multispec, 20 MHz at 37 degrees C. In one group of seven rats, decreased renal function was obtained by 50% glycerol solution administration (10 ml/kg-body weight) 24 hours before the experiment, while in another group of four rats the renal function was decreased, by ureteral ligation for 72 hours. Immediately after the excision of one kidney, Gadolinium-DTPA (70 mumole/kg body weight) was injected intravenously. The second kidney was excised 5 min later. From the T1 and T2 relaxation times measured in the cortex, medulla, and papilla, their respective ratios before and after GdDTPA administration were calculated and correlated with GFR determined by creatinine clearance (Ccr range was between 0 and 850 microliters/min/g kidney weight). For T1: the ratios in the cortex, medulla, and papilla the correlation coefficients were r = 0.81 (p less than 0.001), r = 0.85 (p less than 0.001), and r = 0.87 (p less than 0.0001), respectively. The respective correlation coefficient r values for T2 were r = 0.38 (NS), r = 0.76 (p less than 0.001), and r = 0.73 (p less than 0.001). The present study indicates that a combination of MR measurements, with and without GdDTPA paramagnetic enhancement, can offer a new possibility for obtaining information on renal function and suggest the possibility of concomitant anatomo functional magnetic resonance imaging.  相似文献   

10.
We present results of a search for R-parity-violating decay of the neutralino chi;01, taken as the lightest supersymmetric particle, to a muon and two jets. The decay proceeds through a lepton-number violating coupling lambda(')(2jk) (j=1,2; k=1,2,3), with R-parity conservation in all other production and decay processes. In the absence of candidate events from 77.5+/-3.9 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron in pp collisions at sqrt[s]=1.8 TeV, and with an expected background of 0.18+/-0.03+/-0.02 events, we set limits on squark and gluino masses within the framework of the minimal low-energy supergravity-supersymmetry model.  相似文献   

11.
The NMR relaxivities of Gd-EOB-DTPA and Gd-DTPA were determined in the kidney and liver of intact male Wistar rats immediately following sacrifice and in vitro in solutions and gels, at 1.5 T using a clinical MR scanner. T1 and T2 values of tissue samples were derived from spin-echo image sequences. Tissue gadolinium concentrations were determined by radioassay of Gd153. Gd-EOB-DTPA T1 and T2 relaxivities, R1 and R2 (s−1 mmole−1 kg), were found to be 10.7 ± 0.5 and 22.5 ± 3.2, respectively, for liver, 2.4 ± 0.2 and 12.1 ± 1.7 for kidney cortex, 2.7 ± 0.2 and 14.5 ± 1.9 for kidney outer medulla, 2.0 ± 0.2 and 11.4 ± 2.1 for kidney inner medulla. Gd-DTPA R1 and R2 were found to be 4.8 ± 0.4 and 14.5 ± 3.7 for liver, 1.2 ± 0.1 and 7.9 ± 0.8 for kidney cortex, 1.6 ± 0.1 and 10.2 ± 1.4 for kidney outer medulla, 1.3 ± 0.1 and 10.2 ± 1.2 for kidney inner medulla. Gd-EOB-DTPA and Gd-DTPA R1 was increased in liver compared to agarose gels at 38°C (4.49 ± 0.03 and 3.47 ± 0.06), but reduced in kidney tissues. All R2 were elevated compared to agarose gels at 38°C (5.72 ± 0.12 and 4.12 ± 0.03). Elevated R2 and R1 (expressed in terms of the concentration of gadolinium per kg of tissue) can be accounted for in part by the lower water content of tissues compared with gels or solutions, increased microviscosity and binding to macromolecules. In addition, susceptibility effects may give rise to further increases in R2. By contract, the reduced R1 observed in kidney may be the result of compartmentalization of the magnetopharmaceuticals. Statistically improved fits were obtained for T1 recovery curves for liver in the presence of Gd-EOB-DTPA when a dual exponential model was used. Assuming in vitro values for the relaxivities of these artificial contrast agents will lead to inaccuracies when relating observed signal enhancement factors to tissue gadolinium concentration.  相似文献   

12.
各向异性内包层对双包层光纤特性影响的分析   总被引:2,自引:2,他引:0  
张晓萍  谭志红 《光学学报》2002,22(8):27-932
提出了单轴各向异性材料为内包层,且其主轴沿光纤轴线(z轴)方向的双包层光纤模型,推出了矢量模特征方程,重点研究了主轴折射率比kcl对波导色散的影响,针对从矢量模特征方程求解波导色散因表达式极为复杂而无法直接求解的困难,提出了一种求解波导色散的有效方法,研究结果发现可以在不改变光波导结构参量的条件下,通过改变kcl可有效地改变光纤的波导色散,也分析了kcl、几何参量S、光学参量R对低次模的传输和截止特性的影响。研究结果为获得更为理想的色散补偿、色散平坦光纤及设计新型无源光器件提供了重要的依据。  相似文献   

13.
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied the distribution of kinematic variables in the decay lambda(+)(c)lambda--> e(+)nu(e). By performing a four-dimensional maximum likelihood fit, we determine the form factor ratio, R= f(2)/f(1) = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole mass, M(pole) = [2.21 +/- 0.08(stat) +/- 0.14(syst)] GeV/c(2), and the decay asymmetry parameter of the lambda(+)(c), alpha (lambda(c)) = -0.86 +/-0.03(stat) +/- 0.02(syst), for q(2) = 0.67 (GeV/c(2))(2). We compare the angular distributions of the lambda(+)(c) and lambda(-)(c) and find no evidence for CP violation: A(lambda(c)) = (alpha(lambda(c)) + alpha (lambda(c)))/(alpha(lambda(c))-alpha(lambda(c))) = 0.00 +/- 0.03(stat) +/- 0.01(syst) +/- 0.02, where the third error is from the uncertainty in the world average of the CP-violating parameter, A(lambda), for ppi(-).  相似文献   

14.
We present measurements of the time-dependent CP-violation parameters S and C in B(0) --> eta(')K(0) decays. The data sample corresponds to 384 x 10(6) BB pairs produced by e(+)e(-) annihilation at the Upsilon(4S). The results are S=0.58+/-0.10+/-0.03 and C=-0.16+/-0.07+/-0.03. We observe mixing-induced CP violation with a significance of 5.5 standard deviations in this b --> s penguin dominated mode.  相似文献   

15.
The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~ 3 h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (p < 0.05) changes in thickness of cortex and outer medulla, and regional changes in T2 signal intensity and MTR values. Histological changes included tubular cell death, tubular dilation, urine retention, and interstitial fibrosis, assessed by histology. The MRI measures of renal cortical and medullary atrophy, cortical–medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression.  相似文献   

16.
We report on the doping dependence of the order of the ferromagnetic metal to paramagnetic insulator phase transition in La1-xCaxMnO3. At x=0.33, magnetization and specific heat data show a first order transition, with an entropy change (2.3 J/mol K) accounted for by both volume expansion and the discontinuity of M approximately 1.7mu(B) via the Clausius-Clapeyron equation. At x=0.4, the data show a continuous transition with tricritical point exponents alpha=0.48+/-0.06, beta=0.25+/-0.03, gamma=1.03+/-0.05, and delta=5.0+/-0.8. This tricritical point separates first- (x<0.4) from second-order (x>0.4) transitions.  相似文献   

17.
Phase‐contrast X‐ray imaging using a crystal X‐ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase‐contrast X‐ray system was used, fitted with a two‐crystal X‐ray interferometer at 35 keV X‐ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol‐fixed kidney could be visualized more clearly than that of formalin‐fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol‐fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7–3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol‐fixation technique enables the image contrast to be enhanced in phase‐contrast X‐ray imaging.  相似文献   

18.
We present neutron scattering measurements of the atomic momentum distribution n(k) in solid helium under a pressure p=41 bar (molar volume Vm=20.01+/-0.02 cm3/mol) and at temperatures between 80 and 500 mK. The aim is to determine whether there is Bose-Einstein condensation (BEC) below the critical temperature, Tc=200 mK, where a superfluid density has been observed. Assuming BEC appears as a macroscopic occupation of the k=0 state below Tc, we find a condensate fraction of n0=(-0.10+/-1.20)% at T=80 mK and n0=(0.08+/-0.78)% at T=120 mK, consistent with zero. The shape of n(k) also does not change on crossing Tc within measurement precision.  相似文献   

19.
We present a study of the decay B0(s) --> J/psiphi. We obtain the CP-odd fraction in the final state at time zero, Rperpendicular = 0.16 +/- 0.10(stat) +/- 0.02 (syst), the average lifetime of the (B0(s), B0(s)) system, tau(B0(s)) = 1.39(+0.13)(-0.16)(stat)(+0.01)(-0.02)(syst) ps, and the relative width difference between the heavy and light mass eigenstates, DeltaGamma/Gamma tripple bond (GammaL - GammaH)/Gamma = 0.24(+0.28)(-0.38)(stat)(+0.03)(-0.04)(syst). With the additional constraint from the world average of the lifetime measurements using semileptonic decays, we find tau(B0(s)) = 1.39 +/- 0.06 ps and DeltaGamma/Gamma = 0.25(+0.14)(-0.15). For the ratio of the B0(s) and B0 lifetimes we obtain tau(B0(s))/tau(B0) = 0.91 +/- 0.09(stat) +/- 0.003(syst).  相似文献   

20.
We present measurements of the Lambda(0)(b) lifetime in the exclusive decay channel Lambda(0)(b)--> J/psiLambda(0), with J/psi--> mu(+)mu(-) and Lambda(0)--> ppi(-), the B0 lifetime in the decay B0-->J/psiK(0)(S) with J/psi--> mu(+)mu(-) and K(0)(S)-->pi(+)pi(-), and the ratio of these lifetimes. The analysis is based on approximately 250 pb(-1) of data recorded with the D0 detector in pp collisions at sqrt[s] = 1.96 TeV. The Lambda(0)(b) lifetime is determined to be tau(Lambda(0)(b)) = 1.22(+0.22)(-0.18)(stat) +/- 0.04(syst) ps, the B0 lifetime tau(B0) = 1.40(+0.11)(-0.10)(stat) +/- 0.03(syst) ps, and the ratio tau(Lambda(0)(b))/tau(B0) = 0.87(+0.17)(-0.14)(stat) +/- 0.03(syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda(0)(b) lifetime based on a fully reconstructed decay channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号