首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Composite cryogels simulating the properties of waterproof screens of hydraulic structures, such as protruding dykes and dams, have been obtained by a cryogenic treatment (freezing at –10…–30°C followed by incubation in the frozen state for 12 h and defrosting at a rate of 0.03°C/min) of suspensions of calcium-carbonate-containing (marble or coquina) or cellulose-containing (microcrystalline cellulose or sawdust) particles in aqueous poly(vinyl alcohol) solutions. Viscometric examinations of initial suspensions have shown that adhesion contacts arise between filler particles, as well as discrete and continuous phases, already at the stage of suspension preparation, thereby affecting the properties of resulting cryogels. This is most pronounced when high-porosity sawdust is used as a filler. It has been shown that all the dispersed materials used in the work are “active” fillers for poly(vinyl alcohol) cryogels, these fillers increasing the rigidity of the formed composites. Therewith, porous particles, into which the polymer solution can penetrate, are more efficient. The dependence of the composite rigidity on the temperature of the cryogenic treatment has, as a rule, a bell-shaped pattern with a maximum in the region of –20°C. Being tested for water permeability, the obtained model composite cryogels have exhibited pronounced antifiltration properties (the filtration coefficient is ≤(1–2) × 10–9 cm/s), thus indicating that such materials are promising for solving problems relevant to the protection of fascine hydraulic structures from erosion with snow water.  相似文献   

2.
Composite poly(vinyl alcohol) cryogels formed by the freezing–thawing of aqueous concentrated polymer solutions containing suspended filler were prepared and studied. The particles of unmodified silica gels were used as solid hydrophilic fillers and silica gels with grafted C2, C8, and C18 alkyl groups, as hydrophobic fillers. The granules of cross-linked dextran gel (Sephadex) swollen in water were used as soft hydrophilic fillers and lipophilic Sephadexes modified with propylene oxide groups, as soft hydrophobic fillers. It was shown that the microstructure and mechanical properties of such composites are affected by the presence of hydrophobic dispersed phase, namely, as the hydrophobicity of dispersed particles rises, the rigidity of composites increases with filler concentration at progressively lesser extent.  相似文献   

3.
Cryogenic treatment (freezing at −20°C for 12 h followed by defrosting at a rate of 0.03°C/min) of decane, dodecane, or tetradecane emulsions in a poly(vinyl alcohol) solution (80 g/l) is employed to prepare composite cryogels containing microdroplets of liquid hydrophobic fillers entrapped into a macroporous hydrogel matrix. The effects of the type of a hydrocarbon, the degree of filling, and the addition of a surfactant (decaethylene glycol cetyl ether) on the physicomechanical properties, heat endurance, and morphology of the composites are studied. It is shown that, an increase in the content of liquid hydrophobic fillers within some range of their volume fraction enhances the rigidity of corresponding cryogels. Incorporation of the nonionic surfactant into the initial emulsions results in a complex dependence of the rigidity of the resulting composite cryogels on surfactant concentration and variations in the morphology of pores in the gel phase. At the same time, the heat endurance of all examined composite cryogels weakly depends on the type and concentration of the hydrocarbon fillers, as well as the presence of surfactant additives.  相似文献   

4.
The macroporous conducting polymer cryogels were prepared by the oxidation of aniline hydrochloride in the frozen aqueous solutions of poly(vinyl alcohol) at ? 24 °C. Corresponding polyaniline aerogels supported with poly(vinyl alcohol) have been obtained after thawing of cryogels followed by freeze-drying. Silver was deposited on the composites using the ability of polyaniline to reduce silver ions after the immersion in silver nitrate solutions. Swollen cryogels were coated only on the surface with macroscopic silver particles due to the closed-pore structure in cryogels and limited penetration of silver ions into macropores. The diffusion of silver ions to freeze-dried aerogels was better and further improved by vacuum treatment. Silver microcubes were produced in the pores, the weight fraction of silver in dry composites being typically several per cent, a maximum 13 wt%. The conductivity of the aerogels compressed to pellets depended on the processing and the highest value was 0.27 S cm?1. The aerogels containing silver were characterized in detail with Raman spectroscopy.  相似文献   

5.
The overlimiting current modes are being increasingly used in electrodialysis (ED) of dilute aqueous solutions. Of great importance is establishing a relationship between the design of ED apparatuses and the character of phenomena observed at overlimiting current densities, primarily, electroconvection and H+ and OH? ion generation during water dissociation at the membrane-solution interface. In this work, we analyze the factors governing the efficiency of dilute solutions using modern theoretical concepts and experimental data obtained in laboratory cells and large-scale electrodialysis apparatuses. We also analyze the relationship between the mechanisms of the overlimiting transfer and the design of the desalinating channel. ED apparatuses of different types are considered, namely, apparatuses with profiled membranes, inert spacers, monolayer of ionite granules, and dipolar fillers of unwoven ionite fibers. The optimum concentration ranges of the desalinated solutions were found, and the operating conditions of membrane stacks, providing maximum overlimiting ion transfer, were determined.  相似文献   

6.

A series of strong polyelectrolyte gels were prepared in aqueous solution, using the sodium salt of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) as the monomer and N,N'‐methylene(bis)acrylamide (BAAm) as a crosslinker. The gels were both prepared below (?22°C) and above (25°C) the bulk freezing temperature of the water, producing cryogels and hydrogels, respectively. The crosslinker (BAAm) content was set at 17 mol%, while the initial monomer concentration Co was varied over a wide range. It was found that, at ?22°C, a macroscopic network starts to form at an initial monomer concentration of as low as 0.1 w/v%. In contrast to the conventional hydrogels formed at 25°C, the cryogels have a discontinuous morphology consisting of polyhedral pores of sizes 100–102 μm. The cryogels exhibit superfast swelling properties, as well as reversible swelling–deswelling cycles in water and acetone. An increase in the initial monomer concentration from 2.5 to 10% further increases the response rate of the cryogels due to the simultaneous increase of the porosity of the networks.  相似文献   

7.
Composite cryogels containing porous adsorbent particles were prepared under cryogelation conditions. The composites with immobilized concanavalin A (Con A) were used for capturing glycoproteins. Adsorbent particles were introduced into the structure in order to improve the capacity and to facilitate the handling of the particles. The monolithic composite cryogels were produced from suspensions of polyvinyl alcohol particles and porous adsorbent particles and cross‐linked under acidic conditions at sub‐zero temperature. The cryogels were epoxy activated and Con A was immobilized as an affinity ligand. Binding and elution of horseradish peroxidase (HRP) was studied in batch experiment and in a chromatographic setup. Increasing adsorbent concentration in composite cryogels will increase ligand density, which therefore enhances the amount of bound HRP from 0.98 till 2.9 (milligram enzyme per milliliter of gel) in the chromatographic system. The material was evaluated in 10 cycles for binding and elution of HRP.  相似文献   

8.
An experimental setup (a membrane rotating disk electrode) is described. Combinations ionitepolyethylene applied in the production of membranes MK-40, MK-41, and MA-40 are used as compositions modeling commercial monopolar ionite membranes. The setup design allows one to separately measure the diffusion limitations on the let-in and let-out sides of membranes. The comparison of experimental polarization characteristics and theoretical dependences (plotted earlier) shows that a polarization characteristic is a net dependence for two processes of electromasstransfer. One process is associated with the diffusion limitations from the solution side. The other is attributed to the hydrolysis of fixed ionogenic groups of the membrane’s ionite and precedes the electrochemical stage of charge transfer across the membrane/electrolyte interface.  相似文献   

9.
Experiments on the molecular diffusion of glycols through an MA-41 ionite membrane in the SO 4 2? form demonstrated that the flux of the glycols decreases with increasing sodium sulfate concentration in the feed solution and with increasing molecular mass of the glycol. For ethylene glycol, as an example, it was demonstrated that its flux through the membrane nonlinearly depends on its concentration in the feed solution. Based on the observation that the fluxes of the nonelectrolyte and electrolyte differ significantly, we proposed a method for separating these components by means of dialysis through an ionite membrane. Computer simulations of the structure and IR spectra of the ethylene glycol-nine water molecules and ethylene glycol-nine water molecules-M+ (M+ = Na+, K+) systems were performed. It was revealed that, for the latter system, the activation energy of self-diffusion of ethylene glycol is lower than that for the former.  相似文献   

10.
CaCO3/PEEK (poly-ether ether ketone) composites were prepared on a twin-screw extruder with different mass ratio of CaCO3/PEEK from 0% to 30%. Four types of particles were used as filler in PEEK matrix. The influence of surface treatment with sulfonated PEEK (SPEEK) of the particles on the mechanical and thermal properties of the composites was studied. The experiments included tensile tests, flexural tests, notched Izod impact tests, TGA, DSC and SEM. The modulus and yield stress of the composites increased with CaCO3 particles loadings. This increase was attributed to the bonding between the particles and the PEEK matrix, as can be proved by the SEM pictures of tensile fracture surface of the composites. The impact strength of the composites was modified by the SPEEK coated on the CaCO3 particle surface. DSC experiments showed that the particle content and surface properties influenced the glass transition temperature (Tg) and melting temperature (Tm) of the composites. The Tg increased with the content of fillers while Tm decreased. In this study the fillers treated were found to give better combination properties, which indicated that SPEEK played a constructive role in the CaCO3/PEEK composites.  相似文献   

11.
The ligand sorption of thiocyanate ions on several complex-forming ionites was studied. The ionites were preliminarily transformed into metal forms by saturation with copper(II) ions. ANKB-2 amphoteric ionite in the Cu form had the strongest affinity for thiocyanate ions. The optimum conditions for their extraction were pH ∼ 2 and solution ionic strength 1. IR spectroscopy was used to study the ligand sorption of SCN ions by ANKB-2 ionite in the Cu form. The stability constants of thiocyanate ionite copper complexes were calculated from formation function [`(n)] \bar n .  相似文献   

12.
The possibility of selective extraction and multiple concentration of copper in the form of ultrafine precipitate from dilute Cu2+-Zn2+ solutions by using a suitable sorbent and an effective mode of its regeneration was demonstrated. The extraction was performed in the dynamic mode in column-type reactors filled with an aminoanionite as a selective complexing sorbent, the regeneration of which was conducted by chemical reduction of Cu2+ in the ionite after its saturation. It was established that saturation-reduction cycles repeated many times result in the accumulation of metallic copper at the surface and in the bulk of the sorbent. The mechanism of the process includes the formation of complexes of copper and zinc with amino groups of the ionite and the subsequent displacement of Zn2+ ions from the anionite due to its higher affinity to Cu2+ ions followed by the conversion of Cu2+ ions to an unsorbable form (dispersed metallic copper). It was demonstrated that the presence of dispersed copper stimulates the additional sorption of Cu2+ ions via redox conproportionation. This method makes it possible to obtain a degree of concentration of copper ions in three cycles >300% higher than that attainable in the purely ion-exchange mode (without chemical reduction).  相似文献   

13.
《先进技术聚合物》2018,29(1):151-159
Super porous gum Arabic (GA) cryogels were synthesized by crosslinking of natural GA with divinyl sulfone at cryogenic conditions, −20°C for potential biomedical applications. Humic acid (HA) nanoparticles were also prepared by using degradable and biocompatible crosslinkers such as trimethylolpropane triglycidyl ether, poly(ethylene glycol) diglycidyl ether, and trisodium trimetaphosphate in a single step and then entrapped within GA cryogel network as GA/HA particle cryogel. Furthermore, GA/HA cryogel was used as a template for Ag, Cu, and Fe nanoparticle preparation, and their antimicrobial properties were tested against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis strains. The minimum inhibition concentration values of Ag and Cu nanoparticle‐loaded GA/HA cryogel composites were determined as 10 mg mL−1. Furthermore, the blood compatibility tests such as hemolysis and blood clotting indexes were determined for GA cryogels and found to be more compatible with 0.08 ± 0.01% hemolysis and 89.4 ± 6.1 blood clotting values, whereas the hemolysis of the Ag, Cu, and Fe nanoparticle‐loaded GA/HA Ag, Cu, and Fe metal nanoparticle cryogel composites decreased in the order of Fe > Cu > Ag nanoparticles.  相似文献   

14.
Silver-ion exchanger (electron ion exchanger, EI) composites with equivalent silver and hydrogen counterion contents were prepared by chemical deposition. Microscopic and X-ray data showed that silver nanoparticles and their ensembles isolated from each other and stabilized by a polymeric matrix were formed. Contact of Ag0-EI in the H+ form with solutions of silver salts caused the occurrence of two processes, ion exchange and metal recrystallization. These processes were interrelated because they involved one common particle, the silver counterion. Recrystallization proceeded by the electron-ion mechanism, but, because of matrix isolation of silver particles, electron transfer occurred inside separate structural elements (ensembles of particles) rather than over the whole composite volume. The transfer of silver ions largely occurred over ionogenic matrix centers, which substantially decreased their mobility. The low electronic conductivity of the composite and limited mobility of counterions were charge stabilization factors, which hindered recrystallization and, along with matrix stabilization, contributed to the retention of nanosized silver particles.  相似文献   

15.
A complex study of electrosurface properties has been performed for single-crystalline detonation nanodiamond particles with sizes of 4–5 nm obtained by air annealing of their agglomerates. FTIR spectroscopy and X-ray photoelectron spectroscopy data indicate that the investigated properties result from the presence of two types of ionogenic functional groups on the particle surface, i.e., acidic carboxyl and amphoteric hydroxyl groups. Acid-base potentiometric titration, laser Doppler electrophoresis, and conductometry have been employed to measure the ΓH+(pH) and ΓOH-(pH) adsorption isotherms of potential-determining ions, as well as the pH dependences (in a pH range of 3.5–10.5) of the surface charge density, electrophoretic mobility, and specific surface conductivity of detonation nanodiamond particles in aqueous 0.0001–0.01 M KCl solutions.  相似文献   

16.
Nano/micro ceramic‐filled epoxy composite materials have been processed with various percentage additions of SiO2, Al2O3 ceramic fillers as reinforcements selected from the nano and micro origin sources. Different types of filler combinations, viz. only nano, only micro, nano/micro, and micro/micro particles, were designed to investigate their influence on the thermal expansion, thermal conductivity, and dielectric properties of epoxy polymers. Thermal expansion studies were conducted using thermomechanical analysis that revealed a two‐step expansion pattern consecutively before and after vitreous transition temperatures. The presence of micro fillers have shown vitreous transition temperature in the range 70–80°C compared with that of nano structured composites in which the same was observed as ~90°C. Similarly, the bulk thermal conductivity is found to increase with increasing percentage of micron‐size Al2O3. It was established that the addition of micro fillers lead to epoxy composite materials that exhibited lower thermal expansion and higher thermal conductivity compared with nano fillers. Moreover, nano fillers have a significantly decisive role in having low bulk dielectric permittivity. In this study, epoxy composites with a thermal expansion coefficient of 2.5 × 10?5/K, thermal conductivity of 1.18 W/m · K and dielectric permittivity in the range 4–5 at 1 kHz have been obtained. The study confirms that although the micro fillers seem to exhibit good thermal conductivity and low expansion coefficient, the nano‐size ceramic fillers are candidate as cofillers for low dielectric permittivity. However, a suitable proportion of nano/micro‐mixed fillers is necessary for achieving epoxy composites with promising thermal conductivity, controlled coefficient of thermal expansion and dielectric permittivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The recrystallization of ultradisperse copper chemically deposited onto a sulfo cation exchanger matrix was studied by the potentiometric method. The stationary value of the electrode potential of the copper-sulfo cation exchanger composite was established during a long period of time, which depended on the ionic form of the composite (H+, Cu2+, or Na+), solution composition (CuSO4, H2SO4, and Na2SO4), and solution concentration. Recrystallization was favored by copper(II) counterions, which entered the composite as a result of ion exchange, nonexchange absorption of copper sulfate, or preliminary composite transformation into the Cu2+ form. In the quasi-equilibrium state, the concentration of copper(II) counterions was maintained at a high level by the Donnan interfacial potential. At all the copper(II) sulfate concentrations used, the potential of the Cu2+/Cu ion—metal pair in the ion-exchange matrix remained at virtually the same level, which was indicative of the stable state of copper particles. In the absence of an external source of copper ions, recrystallization was significantly hindered; therefore, the potential exhibited only a slight drift. Copper ions formed in the solution of small crystals were localized in the vicinity of ionogenic matrix centers, which decreased the mobility of these particles as counterions; therefore, the dispersity of particles remained unchanged.  相似文献   

18.
Novel glycidyl methacrylate–butyl acrylate–maleic anhydride (GBM) terpolymers with different molecular weights were synthesized by radical polymerization and characterized using fourier transform infrared, nuclear magnetic resonance (1H‐NMR and 13 C‐NMR), and gel permeation chromatography. Each GBM terpolymer was used to modify aluminum nitride (AlN), and the modified AlN, coded as AlN(GBM), was added to 2,2′‐bis(4‐cyanatophenyl)isopropylidene (CE) resin for preparing composites. Composites based on original AlN or γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane‐modified AlN (AlN(K)) were also prepared for comparison. Although GBM and γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane have similar reactive groups, the results indicate that GBM shows more attractive integrated advantages, reflected by the fact that CE/AlN(GBM) composites have better thermal stability, higher thermal conductivity, and higher glass transition temperature than those of CE/AlN(K). These properties result from better dispersion of fillers, improved interfacial adhesion between fillers and CE resin, and increased cross‐linking density. This study demonstrates that the nature of the coupling agents is an important factor to develop high performance composites for cutting‐edge industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Polyurethane composites containing spherical and flake-shaped silver fillers of micrometer and nanometer sizes were prepared by reacting suspensions of the silver filler in tetraethylene glycol with Desmodur? HL BA. Both the thermal conductivity and the stability of the silver composites are increased in comparison with a reference polyurethane sample without filler. Unexpectedly, the largest increases in thermal conductivity and stability are observed for the spherical silver particles of micrometer size but not for the silver nanoparticles, which is reasoned with larger aggregates of silver particles and a higher degree of crystallinity in the sample containing micrometer-sized silver particles.  相似文献   

20.
Temperature dependences of the differential Gibbs energies and sorption enthalpies of water on KB-4P2 polymethacrylic ionite in Ca2+, Mg2+, Ni2+, and Na+ forms are determined. It is shown that during the two-temperature concentration and purification of electrolyte solutions, the content of the so-called “free” water in the ionite, the absorption of which by the latter is characterized by very low differential values of the Gibbs energy and enthalpy, changes with a change in the temperature of the polymethacrylic cationite suspension and electrolyte solution. It is established that the rather energy-consuming step of heating the phase of ionite and solution contributes mainly to the enthalpy of this process. Equations for the temperature dependences of the activity of water for solutions of sodium, magnesium, calcium, and nickel chlorides of various concentrations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号