首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Phosphoinositide signaling; from affinity probes to pharmaceutical targets   总被引:6,自引:0,他引:6  
Lipid signaling by phosphoinositides (PIP(n)s) involves an array of proteins with lipid recognition, kinase, phosphatase, and phospholipase functions. Understanding PIP(n) pathway signaling requires identification and characterization of PIP(n)-interacting proteins. Moreover, spatiotemporal localization and physiological function of PIP(n)-protein complexes must be elucidated in cellular and organismal contexts. For protein discovery to functional elucidation, reporter-linked phosphoinositides or tethered PIP(n)s have been essential. The phosphoinositide 3-kinase (PI 3-K) signaling pathway has recently emerged as an important source of potential "druggable" therapeutic targets in human pathophysiology in both academic and pharmaceutical environments. This review summarizes the chemistry of PIP(n) affinity probes and their use in identifying macromolecular targets. The process of target validation will be described, i.e., the use of tethered PIP(n)s in determining PIP(n) selectivity in vitro and in establishing the function of PIP(n)-protein complexes in living cells.  相似文献   

2.
The mammalian target of rapamycin (mTOR) signaling network is central to the regulation of cell growth in response to both growth factors and nutrients. We developed a high-throughput, cell-based assay to identify small-molecule modulators of the mTOR signaling network. One such compound, which we name quinostatin, potently inhibits this network by directly targeting the lipid-kinase activity of the catalytic subunits of class Ia PI3Ks. This study illustrates the power of unbiased, phenotypic screening as a means for illuminating cell circuitry, and resulted in the identification of a chemotype for selective inhibition of the class Ia PI3Ks.  相似文献   

3.
A small library of wortmannin based probes was synthesized by installing a clickable handle at C11 site for bioconjugation, and secondary amine and biotin moiety at C20 site to achieve self-activation and cancer target, respectively, to facilitate the analysis of their intracellular effects.  相似文献   

4.
Phosphatidyl inositol 4,5-bisphosphate (PIP2) and phosphatidyl inositol 3,4,5-trisphosphate (PIP3) labeled with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid (BODIPY FL) on the acyl chain or a phosphatidyl ethanolamine head group were separated by CE with LIF detection. Several methods and capillary-coating procedures were tested for the separation of these phosphatidyl inositol phosphates (PIPs) at 20 degrees C. Separation of the PIPs in less than 20 min with excellent resolution was achieved using a buffer containing sodium deoxycholate (SDC), 1-propanol, MgCl2 and the polymer coating reagent, EOTrol LR. The efficiency of the optimized method was as high as 1.3x10(5) plates. The dependence of the separation on the concentration of 1-propanol, SDC, and MgCl2 was determined. The separation of PIP2 and PIP3 was primarily due to differential binding of the lipids to Mg2+ rather than to different solubilities in the micellar phase. The role of the SDC was to prevent adsorption of the hydrophobic lipids to the capillary wall and thus enhance the efficiency. The fluorescent PIPs are of value for both in vitro and in vivo assays of phospholipid metabolism. In particular, the use of these lipids with the optimized capillary-based separation will be of utility for drug screening as well as cell-based assays.  相似文献   

5.
Protein kinase B (PKB) is a serine/threonine kinase that plays a key role in the phosphoinositide 3-kinase (PI3K) pathway-one of the most frequently activated proliferation pathways in cancer. In this pathway, PKB is recruited to the plasma membrane by direct interaction of its pleckstrin homology (PH) domain with the inositol phosphate head-group of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] or phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)]. This recruitment is a critical stage in the activation of PKB, whose downstream effectors play important roles in cell survival, proliferation and growth. It is therefore of great interest to understand PKB's mode of binding, as well as its specificity and affinity for different phosphoinositides. We have used a total of 3 μs of molecular dynamics (MD) simulations to better understand the interactions of the PKB PH domain with the inositol phosphate head-groups of phosphoinositides involved in the PI3K pathway. Our computational models successfully mirror PKB's in vivo selectivity for 3-phosphorylated phosphoinositides. Furthermore, the models also help to rationalize unexpected in vitro data in which inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] binds with a relatively high affinity to the PKB PH domain, despite its parent lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] being known not to bind in vivo. With the support of computational simulations, we propose that when not bonded to a phosphatidate tail Ins(1,4,5)P(3) binds in an orientation in which its inositol ring is flipped with respect to the 3-phosphorylated inositol phosphate ligands and its parent lipid.  相似文献   

6.
Class I PI3 Kinase (PI3K) phosphorylates phosphatidylinositol 4,5-bisphophate (PIP2) to generate the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) and therefore plays an important role in fundamental cellular responses such as proliferation. There are four isoforms of class I PI3K which are known to have different functions and relate to various diseases such as cancer and inflammation. Flavonoids are abundant in fruits, vegetables and plant-derived beverages such as tea. So far, various pharmacological effects of flavonoids have been reported. We previously reported that the flavonoid baicalein exhibits potent PI3K-inhibitory activity. Recently we examined the inhibitory activity of eighteen flavonoids against PI3Ka by using an in vitro homogenous time resolved fluorescence (HTRF) kinase assay, and deduced their structure-activity relationships by comparing the activities of the analogues. Our result suggests that the number of hydroxyl groups in the A and B rings might promote the activity, while loss of C2-C3 double bond might reduce the activity. Furthermore, the activity against 4 class I PI3K isoforms of some selected flavonoids was investigated, and the results indicate that the flavonoids seem to exhibit more potent activity on PI3Ka and d isoforms compared with that on PI3Kb and g isoforms.  相似文献   

7.
A new lab-on-a-chip compatible binding assay platform is introduced. The platform combines dry-chemistry bioaffinity reagents and the recently introduced ArcDia TPX binding assay technique. The technique employs polymer microspheres as a solid phase reaction carrier, fluorescently labeled antibody conjugates, and detection of fluorescence emission from the surface of individual microspheres by two-photon excitation fluorescence. Signal response of the technique is independent of the reaction volume, thus the technique is particularly well suited for detection of bioaffinity reactions from miniature volumes. Performance of the new assay platform is studied by means of an immunometric assay of human alpha-fetoprotein (hAFP) in 384-plate format, and the results are compared to those of a corresponding wet-chemistry assay method. The results show that the ArcDia TPX detection technique can be combined with dry-chemistry reagents without compromises in assay performance. The microchip field has so far been characterized with a lack of microchip-compatible detection platforms which would allow cost-effective microchip design and sensitive bioaffinity detection. The presented detection technique is expected to provide a solution for this shortage.  相似文献   

8.
At least one Holy Grail for many academic researchers and pharmaceutical research divisions alike has been to identify therapeutically useful selective PI3K inhibitors. There are several different but closely related PI3Ks which are thought to have distinct biological roles. Until now, however, researchers have been frustrated by poor selectivity of the available pharmacological inhibitors, which are unable to distinguish the different isoforms of PI3K adequately. Fortunately, recently published work gives cause for optimism; there are now several patent specifications published that describe new PI3K inhibitors, including some that are more selective for the delta isoform of PI3K. Given the involvement of PI3Ks in a plethora of biological settings, such isoform-selective inhibitors may have immense potential use for the treatment of patients with inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases.  相似文献   

9.
A collaborative study was conducted on an inhibition-based protein-binding assay using the Biacore Q biosensor instrument and the Biacore Qflex Kit Vitamin B12 PI. The samples studied included infant formula, cereals, premixes, vitamin tablets, dietary supplements, and baby food. The collaborative study, which involved 11 laboratories, demonstrated that the assay showed an RSDr of 1.59-27.8 and HorRat values for reproducibility of 0.34-1.89 in samples with levels ranging from ppm to ppb. The assay studied is a label-free protein binding-based assay that uses the principle of surface plasmon resonance (SPR) to measure the interaction between vitamin B12 and a specific binding protein. A Biacore Q biosensor uses this principle to detect binding directly at the surface of a sensor chip with a hydrophilic gold-dextran surface. The instrument passes a mixture of prepared sample extract and binding protein solution across a covalently immobilized vitamin B12 chip surface, and the response is given as free-binding protein as the mixture binds to the immobilized surface. This technique uses the specificity and robustness of the protein-ligand interaction to allow minimal sample preparation and a wide range of matrixes to be analyzed rapidly. The reagents and accessories needed to perform this assay are provided as the ready-to-use format "Qflex Kit Vitamin B12 PI." The method is intended for routine use in the quantitative determination of vitamin B12 (as cyanocobalamin) in a wide range of food products, dietary vitamin supplements, and multivitamin premixes.  相似文献   

10.
In a competitive binding assay, the ligand to be quantified competes with a fixed amount of labeled ligand for the sites on a limiting amount of binding protein. The amount of label bound is therefore dependent on the ratio between native and labeled ligand. In a binding assay, one must separate the free ligands from bound. The better the separation, the higher the sensitivity of the assay. But effective methods are often laborious and time-consuming and thus we have developed a novel approach, the Partition Affinity Ligand Assay (PALA).  相似文献   

11.
12.
A renewable amperometric immunosensor based on the sol-gel technique has been constructed by dispersing graphite, complement 3 (C3) antiserum, and sol-gel at low temperature. The prepared immunosensor is rigid, porous, and has a renewable external surface. A competitive binding assay has been used to determine C3 in human serum with the aid of C3 labeled with horseradish peroxidase. The enzyme-labeled antigen can readily diffuse toward the encapsulated antibody, which retains its binding properties. The experimental conditions for the assay with the biocomposite, including the loading of C3 antiserum in the biocomposite, the amount of labeled C3 in incubation solution, incubation time, and temperature, have been optimized. Using C3 labeled with horseradish peroxidase, and o-AP as the substrate, amperometric detection at -150 mV (relative to the SCE) results in a linear detection range of 1.17-35.1 microg mL(-1), with a detection limit of 0.56 microg mL(-1). Serum samples have been assayed and the results demonstrate the feasibility of the proposed immunosensor for clinical analysis. The surface of the immunosensor can be renewed simply by polishing to obtain a fresh immunocomposite ready to use in a new competitive assay.  相似文献   

13.
Phosphatidylinositol (PI) and its phosphorylated derivatives known as phosphoinositides (PIPs), are essential regulators of cell signaling and membrane trafficking, cytoskeletal dynamics, and nuclear functions. Disruption of PI metabolism is associated with disorders such as immune dysfunction, cardiovascular disease, and cancer; therefore, there is currently great interest in studying PIPs and their metabolic enzymes. Here, we describe a method for the separation of fluorescent PI and its seven fluorescent phosphorylated derivatives by CE‐LIF. The CE method utilizes a Tris buffer and sodium deoxycholate in the presence of 30% 1‐propanol and 5% of a dynamic coating reagent, EOTrolTM low reverse (EOTrol LR). It is simple, fast, highly sensitive, and it offers LODs in the order of 1.5 amol. The effect of cations such as lithium, sodium, potassium, cesium, barium, manganese, zinc, magnesium, calcium, spermine, and gentamicin were evaluated. Calcium and magnesium provided the best selectivity and resolution for the separation of the analytes while magnesium offered the best data reproducibility. The developed CE method would be useful in the studies of enzymatic activity in the PI and PIPs metabolic pathways using CE‐based in vitro and CE cell‐based assays, and/or for drug screening.  相似文献   

14.
A renewable amperometric immunosensor based on the sol–gel technique has been constructed by dispersing graphite, complement 3 (C3) antiserum, and sol–gel at low temperature. The prepared immunosensor is rigid, porous, and has a renewable external surface. A competitive binding assay has been used to determine C3 in human serum with the aid of C3 labeled with horseradish peroxidase. The enzyme-labeled antigen can readily diffuse toward the encapsulated antibody, which retains its binding properties. The experimental conditions for the assay with the biocomposite, including the loading of C3 antiserum in the biocomposite, the amount of labeled C3 in incubation solution, incubation time, and temperature, have been optimized. Using C3 labeled with horseradish peroxidase, and o-AP as the substrate, amperometric detection at –150 mV (relative to the SCE) results in a linear detection range of 1.17–35.1 μg mL–1, with a detection limit of 0.56 μg mL–1. Serum samples have been assayed and the results demonstrate the feasibility of the proposed immunosensor for clinical analysis. The surface of the immunosensor can be renewed simply by polishing to obtain a fresh immunocomposite ready to use in a new competitive assay.  相似文献   

15.
Pyrrole–imidazole (PI) polyamides bind to the minor groove of the DNA duplex in a sequence‐specific manner and thus have the potential to regulate gene expression. To date, various types of PI polyamides have been designed as sequence‐specific DNA binding ligands. One of these, cysteine cyclic PI polyamides containing two β‐alanine molecules, were designed to recognize a 7 bp DNA sequence with high binding affinity. In this study, an efficient cyclization reaction between a cysteine and a chloroacetyl residue was used for dimerization in the synthesis of a unit that recognizes symmetrical DNA sequences. To evaluate specific DNA binding properties, dimeric PI polyamide binding was measured by using a surface plasmon resonance (SPR) method. Extending this molecular design, we synthesized a large dimeric PI polyamide that can recognize a 14 bp region in duplex DNA.  相似文献   

16.
Polyphosphoinositides (PPIs) and in particular phosphatidylinositol-(4,5)-bisphosphate (PI4,5P2), control many cellular events and bind with variable levels of specificity to hundreds of intracellular proteins in vitro. The much more restricted targeting of proteins to PPIs in cell membranes is thought to result in part from the formation of spatially distinct PIP2 pools, but the mechanisms that cause formation and maintenance of PIP2 clusters are still under debate. The hypothesis that PIP2 forms submicrometer-sized clusters in the membrane by electrostatic interactions with intracellular divalent cations is tested here using lipid monolayer and bilayer model membranes. Competitive binding between Ca(2+) and Mg(2+) to PIP2 is quantified by surface pressure measurements and analyzed by a Langmuir competitive adsorption model. The physical chemical differences among three PIP2 isomers are also investigated. Addition of Ca(2+) but not Mg(2+), Zn(2+), or polyamines to PIP2-containing monolayers induces surface pressure drops coincident with the formation of PIP2 clusters visualized by fluorescence, atomic force, and electron microscopy. Studies of bilayer membranes using steady-state probe-partitioning fluorescence resonance energy transfer (SP-FRET) and fluorescence correlation spectroscopy (FCS) also reveal divalent metal ion (Me(2+))-induced cluster formation or diffusion retardation, which follows the trend: Ca(2+) ? Mg(2+) > Zn(2+), and polyamines have minimal effects. These results suggest that divalent metal ions have substantial effects on PIP2 lateral organization at physiological concentrations, and local fluxes in their cytoplasmic levels can contribute to regulating protein-PIP2 interactions.  相似文献   

17.
Phosphoinositides, phosphorylated products of phosphatidylinositol, are a family of phospholipids present in tiny amounts (1% or less) in the cytosolic surface of cell membranes, yet they play an astonishingly rich regulatory role, particularly in signaling processes. In this letter, we use molecular dynamics simulations on a model system of mixed lipid monolayers to investigate the interaction of phosphatidylinositol 4,5-bisphosphate (PIP2), the most common of the phosphoinositides, with a polybasic peptide consisting of 13 lysines. Our results show that the polybasic peptide sequesters three PIP2 molecules, forming a complex stabilized by the formation of multiple hydrogen bonds between PIP2 and the Lys residues. We also show that the polybasic peptide does not sequester other charged phospholipids such as phosphatidylserine because of the inability to form long-lived stable hydrogen bonds.  相似文献   

18.
Human kinases are one of the most promising targets for cancer therapy. Methods able to measure the effects of drugs on these cell agents remain crucial for biologists and medicinal chemists. The current work therefore sought to develop an in-capillary enzymatic assay based on capillary electrophoresis (CE) to evaluate the inhibition of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR). These kinases belong to the same signaling pathway PI3K/Akt/mTOR. For this proposal, the capillary was used as a nanoreactor in which a few nanoliters of the kinase, its substrate, adenosine triphosphate (ATP), and the potent inhibitor were separately injected. A transverse diffusion of laminar flow profiles (TDLFP) approach was employed to mix the reactants. Adenosine diphosphate (ADP ) was detected online at 254 nm. The CE assay was first developed on the α isoform of PI3K. It was compared to five commercial kits frequently used to assess kinase inhibition, based on time-resolved fluorescence resonance energy transfer (TR-FRET) and bioluminescence. Each assay was evaluated in terms of sensitivity (S/B), reproducibility (Z′), and variability (r 2). This CE method was easily extended to assay the inhibition of the β, γ, and δ isoforms of PI3K, and of the other kinases of the pathway, Akt1 and mTOR, since it is based on in-capillary mixing by TDLFP and on ADP quantification by simple UV absorption. This work shows for the first time the evaluation of inhibitors of the kinases of the PI3K/Akt/mTOR pathway using a common in-capillary CE assay. Several inhibitors with a wide range of affinity toward these enzymes were tested.  相似文献   

19.
Histamine is a biogenic amine synthesized by the enzymatic decarboxylation of histidine. Implication of histamine in allergy is well described but histamine is also found in some specific neurones, functions as a neurotransmitter and regulates sleep/wake cycles, hormonal secretion, cardiovascular control and thermo-regulation. We have developed a TR-FRET histamine assay, based on the competition between sample histamine and allophycocyanine (XL665) labelled histamine for binding to a Europium cryptate (EuK) labelled antibody. As histamine is a small monoamine molecule, high affinity antibodies have been raised against carrier protein conjugated histamine. Therefore, sample histamine needs to be derivatized in the same way as the conjugated histamine, so that the antibody will have a similar affinity for both molecules. This acylation step is performed directly in wells and does not need to be done in separate vials, making handling easier for large numbers of samples. The incubation takes place at room temperature for 3 hours. The assay covers a measurement range of 1.56 to 400 nM and shows an analytical sensitivity of 1.3nM. We have shown that miniaturization of sample and reagents volumes down to 20 micro l does not alter these performances. This histamine release assay provides a particularly well adapted procedure for HTS and secondary screening compared to current heterogeneous methods.  相似文献   

20.
Antibodies have traditionally been used for isolating affinity reagents to new molecular targets, but alternative protein scaffolds are increasingly being used for the directed evolution of proteins with novel molecular recognition properties. We have designed a combinatorial library based on the DNA binding domain of the human retinoid-X-receptor (hRXRalpha). We chose this domain because of its small size, stable fold, and two closely juxtaposed recognition loops. We replaced the two loops with segments of random amino acids, and used mRNA display to isolate variants that specifically recognize adenosine triphosphate (ATP), demonstrating a significant alteration of the function of this protein domain from DNA binding to ATP recognition. Many novel independent sequences were recovered with moderate affinity and high specificity for ATP, validating this scaffold for the generation of functional molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号