首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequential adsorption of the wild type T4 lysozyme and one of its structural stability variants was studied, using ellipsometry and 125I radioisotope labeling techniques. The mutant lysozyme was produced by substitution of the isoleucine residue at position 3 in the wild type with a tryptophan residue, resulting in a protein with lower structural stability. The mutant protein was more resistant to surfactant-mediated elution, and apparently adsorbed at the interfaces with a greater interfacial area/molecule than the wild typeT4 lysozyme. However, the results of each type of experiment suggested that sequential adsorption and exchange of proteins occurred only in the case of the less stable mutant followed by the wild type. This suggests that, in these exchange reactions, properties of the adsorbing protein (e.g. its ability to adsorb when a relatively small amount of unoccupied area is present) were more important than the apparent binding strength of the adsorbed protein molecules.  相似文献   

2.
A kinetic model for single component protein adsorption which can be readily extended to adsorption from multi-protein solutions was developed, and used to simulate adsorption of site-directed, structural stability mutants of bacteriophage T4 lysozyme. The model allows for two different adsorbed "states," distinguished by different binding strengths and different occupied areas. The presence of an increasing energy barrier to adsorption was incorporated into the model by formulating the adsorption rate constants as functions of time. Numerical analysis was performed using the Marquardt method. Estimated model parameters were consistent with the effect of structural stability on adsorption. In particular, kinetic parameters were such that adsorption into the more tightly bound, conformationally altered state was favored by less stable variants. Copyright 1999 Academic Press.  相似文献   

3.
The adsorption behavior of proteins in hydrophobic interaction chromatography (HIC) was evaluated by determining the isotherms of a wide range of proteins on various HIC resin systems. Parallel batch experiments were carried out with eleven proteins on three hydrophobic resins with different ligand chemistries and densities. The effects of salt concentration, resin chemistry and protein properties on the isotherms were also examined. The resulting isotherms exhibited unique patterns of adsorption behaviors. For certain protein-resin combinations, a "critical salt behavior" was observed where the amount of protein bound to the resin increased significantly above this salt concentration. Proteins that exhibited this behavior tended to be relatively large with more solvent accessible hydrophobic surface area. Further, calculations indicated that under these conditions the occupied surface area of the adsorbed protein layer could exceed the accessible surface area. The establishment of unique classes of adsorption behavior may shed light on our understanding of the behavior of proteins in HIC systems.  相似文献   

4.

Background

We have previously shown that the P. gingivalis HmuY hemophore-like protein binds heme and scavenges heme from host hemoproteins to further deliver it to the cognate heme receptor HmuR. The aim of this study was to characterize structural features of HmuY variants in the presence and absence of heme with respect to roles of tryptophan residues in conformational stability.

Results

HmuY possesses tryptophan residues at positions 51 and 73, which are conserved in HmuY homologs present in a variety of bacteria, and a tryptophan residue at position 161, which has been found only in HmuY identified in P. gingivalis strains. We expressed and purified the wildtype HmuY and its protein variants with single tryptophan residues replaced by alanine or tyrosine residues. All HmuY variants were subjected to thermal denaturation and fluorescence spectroscopy analyses. Replacement of the most buried W161 only moderately affects protein stability. The most profound effect of the lack of a large hydrophobic side chain in respect to thermal stability is observed for W73. Also replacement of the W51 exposed on the surface results in the greatest loss of protein stability and even the large aromatic side chain of a tyrosine residue has little potential to substitute this tryptophan residue. Heme binding leads to different exposure of the tryptophan residue at position 51 to the surface of the protein. Differences in structural stability of HmuY variants suggest the change of the tertiary structure of the protein upon heme binding.

Conclusions

Here we demonstrate differential roles of tryptophan residues in the protein conformational stability. We also propose different conformations of apo- and holoHmuY caused by tertiary changes which allow heme binding to the protein.  相似文献   

5.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

6.
The ability of 2S albumins from sunflower seeds to stabilize oil-in-water emulsions has been investigated, demonstrating that one of the proteins (SFA8) effectively stabilizes emulsions, while another (SF-LTP) does not stabilize emulsions. The surface tension and surface dilation viscosity of these two proteins were measured, rationalizing the emulsifying ability of SFA8 in terms of its ability to form a strongly elastic monolayer at interfaces. The secondary structure changes that occur upon adsorption of SFA8 to the oil/water interface have also been studied by fluorescence, circular dichroism (CD), and Fourier-transform infrared (FT-IR) spectroscopy. It was found that the beta-sheet content of the protein increased upon adsorption at the expense of alpha-helix and random structure. Moreover, FT-IR measurements indicate the presence of intermolecular beta-sheet formation upon adsorption. Fluorescence studies with an oil-soluble fluorescence quencher indicate that the single tryptophan residue present in SFA8 may become located in the oil-phase of the emulsion. This residue is thought to be partially buried in the native protein, and these data suggest that changes in the polypeptide region flanking this residue may play an important role in the molecular rearrangement that occur on or following adsorption to the oil/water interface.  相似文献   

7.
Structure fluctuations in proteins affect a broad range of cell phenomena, including stability of proteins and their fragments, allosteric transitions, and energy transfer. This study presents a statistical-thermodynamic analysis of relationship between the sequence composition and the distribution of residue fluctuations in protein-protein complexes. A one-node-per-residue elastic network model accounting for the nonhomogeneous protein mass distribution and the interatomic interactions through the renormalized inter-residue potential is developed. Two factors, a protein mass distribution and a residue environment, were found to determine the scale of residue fluctuations. Surface residues undergo larger fluctuations than core residues in agreement with experimental observations. Ranking residues over the normalized scale of fluctuations yields a distinct classification of amino acids into three groups: (i) highly fluctuating-Gly, Ala, Ser, Pro, and Asp, (ii) moderately fluctuating-Thr, Asn, Gln, Lys, Glu, Arg, Val, and Cys, and (iii) weakly fluctuating-Ile, Leu, Met, Phe, Tyr, Trp, and His. The structural instability in proteins possibly relates to the high content of the highly fluctuating residues and a deficiency of the weakly fluctuating residues in irregular secondary structure elements (loops), chameleon sequences, and disordered proteins. Strong correlation between residue fluctuations and the sequence composition of protein loops supports this hypothesis. Comparing fluctuations of binding site residues (interface residues) with other surface residues shows that, on average, the interface is more rigid than the rest of the protein surface and Gly, Ala, Ser, Cys, Leu, and Trp have a propensity to form more stable docking patches on the interface. The findings have broad implications for understanding mechanisms of protein association and stability of protein structures.  相似文献   

8.
Structural stability of the template is one of the most important considerations during the preparation of protein imprinting technology. To address this limitation, we propose a novel and versatile strategy of utilizing macromolecularly functional monomers to imprint biomacromolecules. Results from circular dichroism and synchronous fluorescence experiments reflect the macromolecularly functional monomers tendency to interact with the protein surface instead of permeating it and destroying the hydrogen bonds that maintain the protein’s structural stability, therefore stabilizing the template protein structure during the preparation of imprinted polymers. The imprinted polymers composed of macromolecularly functional monomers or their equivalent micromolecularly functional monomers over silica nanoparticles were characterized and carried out in batch rebinding test and competitive adsorption experiments. In batch rebinding test, the imprinted particles prepared with macromolecularly functional monomers exhibited an imprinting factor of 5.8 compared to those prepared by micromolecularly functional monomers with the imprinting factor of 3.4. The selective and competitive adsorption experiments also demonstrated the imprinted particles made by macromolecularly functional monomers possessed much better selectivity and specific recognition ability for template protein. Therefore, using macromolecularly functional monomers to imprint may overcome the mutability of biomacromolecule typically observed during the preparation of imprinted polymers, and thus promote the further development of imprinting technology.  相似文献   

9.
Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly inhomogeneous adsorbed protein layers, with implications for the stability of the corresponding foams and emulsions stabilized by such films. Overall, the experimental results are in broad agreement with the sorts of trends predicted by earlier computer simulations of protein films subjected to such compression and expansion.  相似文献   

10.
Structure, Stability, and Activity of Adsorbed Enzymes   总被引:1,自引:0,他引:1  
A proteolytic enzyme, α-chymotrypsin, and a lipolytic enzyme, cutinase, were adsorbed from aqueous solution onto a hydrophobic Teflon surface and a hydrophilic silica surface. We investigated the influence of adsorption on the structure, the structure thermal stability and the activity of these enzymes. Probing the protein structure by circular dichroism spectroscopy indicates that Teflon promotes the formation of helical structure in α-chymotrypsin, but the reverse effect is found with cutinase. The perturbed protein structures on Teflon are remarkably stable, showing no heat-induced structural transitions up to 100°C, as monitored by differential scanning calorimetry. Contact with the hydrophilic silica surface leads to a loss in the helix content of both proteins. Differential scanning calorimetry points to a heterogeneous population of adsorbed protein molecules with respect to their conformational states. The fraction of the native-like conformation in the adsorbed layer increases with increasing coverage of the silica surface by the proteins. The specific enzymatic activity in the adsorbed state qualitatively correlates with the fraction of proteins in the native-like conformation.  相似文献   

11.
The adsorption of eight different proteins (alpha-lactalbumin (types I and III), bovine serum albumin, hemoglobin, myoglobin, cytochrome c, alpha-casein, and lysozyme) onto a model anionic surface was performed at equivalent bulk (solvent, ionic strength, pH) and surface conditions. Adsorption was monitored on a quartz crystal microbalance with dissipation monitoring (QCM-D) with citrate-coated gold surfaces as adsorbents and has been correlated to native fold stability determined from near- and far-UV circular dichroism (CD) measurements. The proteins studied here were chosen based on their pI and documented knowledge about their structural stability and flexibility. Protein adsorption was found to be independent of global protein charge. Rather, binding occurs through oppositely charged patches on protein and surface. Moreover, data indicate that there is a correlation between secondary and tertiary structure stability and the adsorption characteristics at interfaces. Also, protein surface coverage, layer thickness, and flexibility can be tuned as a function of deposition method. This is discussed in terms of adsorption/spreading kinetics and intermolecular (protein-surface and protein-protein) interactions. Adsorption to surfaces can induce formation of supramolecular structures such as micelles (in the case of alpha-Cas) and multilayers (as for Hb). In the case of alpha-casein, this phenomenon depends on the deposition method and protein concentration. When ranking the surface coverage for proteins added in excess, the order is Lyz < Cyt c < Mb < BSA < alpha-La I < alpha-Cas < alpha-La III < Hb, which can be correlated to the proteins ability to form supramolecular structures (alpha-Cas, Hb), overall conformational flexibilities, and ability to form stable intermediates.  相似文献   

12.
The cell glycocalyx is an attractive model for surface modification of liposomes, because its hydrated oligosaccharide layer inhibits nonspecific protein adsorption and can provide specificity towards desired sites. Here, we report on the use of lactose as a model saccharide to modify the liposome surface and examine the vesicle size and stability. Two kinds of lactosyl lipids, including lactosyl ether-lipid (6a) and lactosyl ester-lipid (6b), which contain octadecyl and octadecanoyl as the lipid tails, respectively, were synthesized and their liposomes were prepared by the extrusion method. The effects of glycolipid structure, concentration, and the pore size of the extrusion membrane on vesicle size and stability were investigated at room temperature by photon correlation spectroscopy (PCS). All liposomes with 5 or 10 mol% of lactosyl lipids had a narrow size distribution and remained stable at room temperature for at least one month, which is comparable to 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)- and poly(ethylene glycol) (PEG)-liposomes. The maximum incorporation of lactosyl ester-lipid into liposomes was 15 mol%, compared with only 10 mol% for the lactosyl ether-lipid. The lactosyl ester-liposomes had better stability and exhibited less size change than the lactosyl ether-liposomes at 15 or 20 mol% of lactosyl lipids incorporated. This may be attributed to the better structural compatibility of lactosyl ester-lipid with DSPC. The PCS results show that the glycolipid structure and concentrations are major factors that affect vesicle stability, while the pore size of extrusion membranes has no influence.  相似文献   

13.
The adsorption kinetics and dodeceyltrimethylammonium bromide-mediated elution of the wild type and two structural stability mutants of bacteriophage T4 lysozyme were recorded in situ, at silica surfaces. Experiments were performed at different solution concentrations, ranging from 0.01 to 1.0 mg/ml. Plateau values of adsorbed mass generally increased with increasing solution concentration, with the adsorbed layer being only partially eluted by buffer. Treatment with surfactant removed more of the adsorbed protein in each case, with the remaining adsorbed mass varying little with concentration. Comparison of the data to an adsorption mechanism allowing for three adsorbed states, distinguished by binding strength, showed that the fraction of adsorbed molecules present in the most tightly bound state (state 3) decreased as adsorption occurred from solutions of increasing concentration. However, the absolute amounts of state 3 molecules present in each case were less dependent on solution concentration. Adsorption of T4 lysozyme into state 3 is suggested to occur early in the adsorption process and continue until some critical surface concentration is reached. Beyond this critical value of adsorbed mass, adsorption is suggested to progress with adoption of more loosely bound states.  相似文献   

14.
Unfolding of proteins has often been mentioned as an important factor during the adsorption process at air-water interfaces and in the increase of surface pressure at later stages of the adsorption process. This work focuses on the question whether the folding state of the adsorbed protein depends on the rate of adsorption to the interface, which can be controlled by bulk concentration. Therefore, the adsorption of proteins with varying structural stabilities at several protein concentrations was studied using ellipsometry and surface tensiometry. For beta-lactoglobulin the adsorbed amount (Gamma) needed to reach a certain surface pressure (Pi) decreased with decreasing bulk concentration. Ovalbumin showed no such dependence. To verify whether this difference in behavior is caused by the difference in structural stability, similar experiments were performed with cytochrome c and a destabilized variant of this protein. Both proteins showed identical Pi-Gamma, and no dependence on bulk concentration. From this work it was concluded that unfolding will only take place if the kinetics of adsorption is similar or slower than the kinetics of unfolding. The latter depends on the activation energy of unfolding (which is in the order of 100-300 kJ/mol), rather than the free energy of unfolding (typically 10-50 kJ/mol).  相似文献   

15.
Beside alpha-helices, beta-sheets are the most common secondary structure elements of proteins. In this article, the question of structure and stability of parallel and antiparallel sheets of various lengths is addressed. All data obtained are compared to a selected set of protein structures. In antiparallel beta-sheets, one of the two possible H-bonded structures (containing 14 atoms in the H-bonded pseudoring) is energetically more favored and also more abundant in proteins than the other one (with 10 atoms involved in the pseudoring). Parallel beta-sheets and their subunits are energetically less stable and indeed found to occur more rarely in proteins. Antiparallel hairpins are disfavored compared to beta-sheets formed by sequentially separated strands. Agreement between theory and experimental data indicates that characterization of structural building blocks at an appropriately accurate level of theory is a useful tool to get insight into fundamentals of protein structure.  相似文献   

16.
Quantitative analysis of competitive milk protein adsorption to air/water interfaces in aqueous foam was performed by capillary electrophoresis (CE). Foams were made by whipping protein solutions, in which skim milk powder (SMP) and whey protein isolate (WPI) were mixed at 0.5% protein in different proportions at different pH values and NaCl concentrations. Preferential adsorption of beta-casein into foam phases occurred under most solution conditions, if partial dissociation of the casein micelles had occurred. Preferential adsorption of beta-casein was not observed with added Ca2+, due to the re-association of casein micelles. Enrichment of caseins into the foam phase was more apparent than that of whey proteins. The foamability of SMP demonstrated a continuous improvement due to the gradually increasing dissociation of casein micelles when the concentration of NaCl increased from 0 to 0.8 M. The foamability of WPI increased when NaCl concentration rose from 0 to 0.1 M, and decreased with further increase in NaCl concentration. NaCl at low concentration (I < or = 0.4) did not show a significant effect on the competitive adsorption among milk proteins, indicating that electrostatic interactions do not play a key role in competitive adsorption. NaCl at higher concentration, e.g., 0.6 M, caused less whey protein to be adsorbed to the air/water interfaces. The whippability of WPI was highest at pH 4.5 and lowest at pH 3, and that of SMP was the opposite. The proportions of beta-lactoglobulin and alpha-lactalbumin in the foam phase were lower at acidic pH and higher at basic pH, compared with that at natural pH of WPI.  相似文献   

17.
Surface properties of four proteins having molecular weights less than 5,000 are reported at air/water and alumina/water interface at pH 7.0. Reversibility in the adsorption of these proteins at the alumina/water interface is tested. The adsorption on alumina/water interface has been found to be controlled by electrostatic interaction. Positive adsorption was obtained when protein and alumina surface had opposite charges and negative adsorption was obtained when both protein and surface had same charges. Of the four proteins reversibility in adsorption was observed with the one having the lowest molecular weight of 3100. The adsorption behavior apparently had no correlation with their surface hydrophobic!ty. Time dependent changes in air/water interfacial tension was observed for all the four proteins indicating time dependent loosening of compact protein structure and surface unfolding.  相似文献   

18.
In this study a set of chemically engineered variants of ovalbumin was produced to study the effects of electrostatic charge on the adsorption kinetics and resulting surface pressure at the air-water interface. The modification itself was based on the coupling of succinic anhydride to lysine residues on the protein surface. After purification of the modified proteins, five homogeneous batches were obtained with increasing degrees of modification and zeta-potentials ranging from -19 to -26 mV (-17 mV for native ovalbumin). These batches showed no changes in secondary, tertiary, or quaternary structure compared to the native protein. However, the rate of adsorption as measured with ellipsometry was found to decrease with increasing net charge, even at the initial stages of adsorption. This indicates an energy barrier to adsorption. With the use of a model based on the random sequential adsorption model, the energy barrier for adsorption was calculated and found to increase from 4.7 kT to 6.1 kT when the protein net charge was increased from -12 to -26. A second effect was that the increased electrostatic repulsion resulted in a larger apparent size of the adsorbed proteins, which went from 19 to 31 nm2 (native and highest modification, respectively), corresponding to similar interaction energies at saturation. The interaction energy was found to determine not only the saturation surface load but also the surface pressure as a function of the surface load. This work shows that, in order to describe the functionality of proteins at interfaces, they can be described as hard colloidal particles. Further, it is shown that the build-up of protein surface layers can be described by the coulombic interactions, exposed protein hydrophobicity, and size.  相似文献   

19.
An ideal nonbiofouling surface for biomedical applications requires both high-efficient antifouling characteristics in relation to biological components and long-term material stability from biological systems. In this study we demonstrate the performance and stability of an antifouling surface with grafted zwitterionic sulfobetaine methacrylate (SBMA). The SBMA was grafted from a bromide-covered gold surface via surface-initiated atom transfer radical polymerization to form well-packed polymer brushes. Plasma protein adsorption on poly(sulfobetaine methacrylate) (polySBMA) grafted surfaces was measured with a surface plasmon resonance sensor. It is revealed that an excellent stable nonbiofouling surface with grafted polySBMA can be performed with a cycling test of the adsorption of three model proteins in a wide range of various salt types, buffer compositions, solution pH levels, and temperatures. This work also demonstrates the adsorption of plasma proteins and the adhesion of platelets from human blood plasma on the polySBMA grafted surface. It was found that the polySBMA grafted surface effectively reduces the plasma protein adsorption from platelet-poor plasma solution to a level superior to that of adsorption on a surface terminated with tetra(ethylene glycol). The adhesion and activation of platelets from platelet-rich plasma solution were not observed on the polySBMA grafted surface. This work further concludes that a surface with good hemocompatibility can be achieved by the well-packed surface-grafted polySBMA brushes.  相似文献   

20.
The distribution of proteins and lipids in food emulsions and foams is determined by competitive and cooperative adsorption between the two types of emulsifiers at the fluid-fluid interfaces, and by the nature of protein-lipid interactions, both at the interface and in the bulk phase. The existence of protein-lipid interactions can have a pronounced impact on the surface rheological properties of these systems. Therefore, these results are of practical importance for food emulsion formulation, texture, and stability. In this study, the existence of protein-lipid interactions at the interface was determined by surface dynamic properties (interfacial tension and surface dilational modulus). Systematic experimental data on surface dynamic properties, as a function of time and at long-term adsorption, for protein (whey protein isolate (WPI)), lipids (monoglycerides), and protein-lipid mixed films at the oil-water interface were measured in an automated drop tensiometer. The dynamic behaviour of protein+lipid mixed films depends on the adsorption time, the lipid and the protein/lipid ratio in a rather complicated manner. The protein determined the interfacial characteristics of the mixed film as the protein at WPI>/=10(-2)% wt/wt saturated the film, no matter what the concentration of the lipid. However, there exists a competitive or cooperative adsorption of the emulsifier (WPI and monoglycerides), as the concentration of protein in the bulk phase is far lower than that for interfacial saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号