首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li4Ti5O12/Cu2O composite was prepared by ball milling Li4Ti5O12 and Cu2O with further heat treatment. The structure and electrochemical performance of the composite were investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. Li4Ti5O12/Cu2O composite exhibited much better rate capability and capacity performance than pristine Li4Ti5O12. The discharge capacity of the composite at 2 C rate reached up to 122.4 mAh g?1 after 300 cycles with capacity retention of 91.3 %, which was significantly higher than that of the pristine Li4Ti5O12 (89.6 mAh g?1). The improvement can be ascribed to the Cu2O modification. In addition, Cu2O modification plays an important role in reducing the total resistance of the cell, which has been demonstrated by the electrochemical impedance spectroscopy analysis.  相似文献   

2.
Cu2O polyhedral particles and hollow spheres were successfully synthesized by adjusting the concentration of triethanolamine (TEOA). The as-prepared samples were structurally characterized by the scanning electron microscope (SEM), X-ray powder diffraction (XRD), and transmission electron microscopy (TEM). The results revealed that the solid polyhedral Cu2O with sizes ranging from 70 to 150 nm was in good crystallization. The diameter of the hollow Cu2O spheres increased to 350–450 nm. It was found that the sizes and morphologies of the products could be significantly affected by the concentration of TEOA. And the morphology of Cu2O transformed from solid polyhedrons to hollow spheres with the further enrichment of TEOA concentration. A possible mechanism was proposed to explain the formation of the hollow Cu2O spheres. In addition, we investigated the antibacterial activities of the samples. It was demonstrated that the hollow Cu2O sphere exhibited better antibacterial activities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the solid polyhedral Cu2O.  相似文献   

3.
The possible formation of a nanocrystalline structure in controlled crystallization of a bulk Zr50Ti16Cu15Ni19 amorphous alloy has been studied using differential scanning calorimetry, transmission and high-resolution electron microscopy, and x-ray diffraction. It was established that crystallization of the alloy at temperatures above the glass formation point occurs in two stages and brings about the formation of a nanocrystalline structure consisting of three phases. Local spectral x-ray analysis identified the composition and structure of the phases formed.  相似文献   

4.
The internal structure and orientation of thin (150–300 μm) flexible Al2O3 fibers used as substrates for third-generation high-temperature superconducting wires are studied by different methods. It is shown that using scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and X-ray diffraction, one can reliably determine the position of the \((1\bar 102)\) plane, on which good YBa2Cu3Oy films can be grown.  相似文献   

5.
Composite CuO/Cu2O/Cu anode for lithium ion battery was designed and synthesized via facile electrodeposition and the subsequent in situ thermal oxidation in air at 300 °C for 1 h. The as-prepared composite CuO/Cu2O/Cu anode was studied in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), galvanostatic charge/discharge, cyclic voltammetry (CV), and AC impedance. As expected, the composite CuO/Cu2O/Cu with CuO-rich surface displayed hierarchical cypress-like morphology; furthermore, the hierarchical cypress-like CuO/Cu2O/Cu anode also delivered satisfactory electrochemical performances. For example, the reversible discharge capacity remained at 534.1 mAh/g even after 100 cycles. The enhanced electrochemical performances were attributed to the hierarchical cypress-like porous structure and the synergistic effect among the composite active copper oxides and highly conductive Cu current collector.  相似文献   

6.
The HgO-added YBa2Cu3O7−δ (YBCO) superconductor has been studied for its structural and superconducting properties. Polycrystalline YBCO samples were synthesized through solid-state reaction method by adding HgO in different concentrations without using oxygen annealing. All the samples showed a sharp superconducting transition temperature around 90 K. The X-ray diffraction patterns of all the samples revealed monophasic Y-123 nature. The structural studies were carried out by neutron scattering and Rietveld analysis. The neutron scattering revealed that Hg is not incorporated in the Y-123 system and has shown optimum oxygen concentration. The significant role played by the HgO is to provide oxygen ambient through its decomposition, thus changing the oxygen balance in favour of high Cu-valence state.  相似文献   

7.
By controlling the oxygen pressure, single-phase CuO and Cu2O thin films have been obtained on quartz substrates using a pulsed laser deposition technique. The structure properties and linear optical absorption of the films were characterized by X-ray diffraction and UV–VIS spectroscopy. By performing z-scan measurements using a femtosecond laser (800 nm, 50 fs), the real and imaginary parts of the third-order nonlinear susceptibility, Re χ (3) and Im χ (3), of the films were determined. Both CuO and Cu2O films exhibited large optical nonlinearities, which is comparable to those in some representative semiconductor films such as ZnO and GaN films using femtosecond laser excitation. Compared with Cu2O films, the CuO films showed larger third-order nonlinear optical effects under off-resonance excitation. Furthermore, the mechanisms of the optical nonlinearities in CuO and Cu2O films are explained in the main text. It was suggested that the reasons of the difference in their nonlinear refractive effects may be related to the different electronic structure in CuO and Cu2O materials.  相似文献   

8.
Abstract—The interaction of YBa2Cu3Oy (123) with water vapor at temperatures T ≤ 150° has been studied. It has been shown that, with an increase in temperature, the mechanism of its interaction with water changes. Near room temperature, the main process is hydrolytic decomposition. At T ~ 100°C, the absorption of water is significantly reduced, because the role of hydrolysis becomes less important and water penetrates the structure weakly and is incorporated into oxygen vacancies mainly in the form of OH–-groups, which leads to the transition of YBa2Cu3Oy from the tetragonal to orthorhombic phase. With an increase in temperature to 150°C, the absorption of water increases again. In this case, the main mechanism is the penetration of water to the 123 structure, which leads to splitting of Cu–O chains and a phase transition from the 123 to pseudo-124 structure. The role of different mechanisms of interaction with water essentially depends on the oxygen content in the 123 structure. At a low oxygen index (y = 6.3), the role of hydrolysis is more important, and, at y ≥ 6.5, the incorporation of water into the structure prevails. It has been revealed that, at T = 150°C, after absorption of water, YBa2Cu3O6.96 becomes a proton conductor.  相似文献   

9.
Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.  相似文献   

10.
Thermal decomposition of the nonstoichiometric high-temperature superconductor YBa2Cu3O6.8 at a temperature of 200°C in air has been investigated using the full-profile analysis of X-ray diffraction lines. Two mechanisms of decomposition are revealed. The first mechanism, i.e., separation into two phases with a different oxygen content, occurs continuously. The second mechanism, i.e., disordering of the heavy atoms Y, Ba, Ba, Y along the crystallographic axis c, begins to occur after a 20- to 35-h annealing and progresses with a further annealing.  相似文献   

11.
A series of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials were synthesized through co-oxidation-controlled crystallization method followed by solid-state reaction at different calcination temperatures under oxygen flowing. The crystal structure and particles morphology of the as-prepared powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. All samples correspond to the layered α-NaFeO2 structure with R-3m space group. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C presents a better hexagonal ordering structure and better spherical particles and possesses a high tap density of 3.22 g cm?3. Meanwhile, the NCT-2 sample exhibits an advanced electrochemical performance with an initial discharge capacity of 174.2 mAh g?1 and capacity retention of 86.7 % after 30 cycles at 0.2 C.  相似文献   

12.
For the analysis of the electron structure of hematite under pressure, methods of the generalized transition state and local electron density approximation combined with the dynamical mean-field theory have been used. The transition of iron ions from the high-spin to low-spin state and the insulator-metal transition observed in Fe2O3 at high pressures have been considered. It is shown that in the low-symmetry crystal structure of Fe2O3 experimentally revealed at high pressures a low-spin metallic state is also preferable. The theoretical results obtained agree well with experimental data.  相似文献   

13.
Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG) is annealed at 573 K under 3 GPa and its structural relaxation is investigated by X-ray diffraction, ultrasonic study, compression as well as sliding wear measurements. It is found that after the ZrTiCuNiBe BMG sample was annealed under high pressure, the mechanical properties were improved. Moreover, theBMG with relaxed structure exhibits markedly different acoustic properties. These results are attributed to the fact that relaxation under high-pressure results in a microstructural transformation in the BMG.  相似文献   

14.
The crystal and magnetic structures of manganite Pr0.7Ba0.3MnO3 have been studied at high pressures of up to 5.1 GPa and temperatures from 10 to 300 K by means of the neutron diffraction. At normal pressure and a temperature T C = 200 K, a ferromagnetic state forms in Pr0.7Ba0.3MnO3. At high pressures P ≥ 1.9 GPa and T < T N ≈ 153 K, a new antiferromagnetic state of A-type have been observed. Under high pressure, the Curie temperature T C increases with the characteristic quantity dT C/dP ≈ 2.4 K/GPa. A possible reason for the appearance of an A-type antiferromagnetic phase in Pr0.7Ba0.3MnO3 at high pressures may be anisotropic uniaxial compression of oxygen octahedra along the b axis of the orthorhombic structure.  相似文献   

15.
A new preparation method for CuInS2 and CuInSe2 nanoparticles synthesis is described without using any organic solvent. Heating Cu, In, and S/Se precursors dissolved in water for 30 min in a microwave oven in the presence of mercapto-acetic acid leads to monodispersed chalcopyrite nanoparticles. No precipitation of these nanoparticles is observed after several months at room temperature. These new materials have been thoroughly characterized to confirm their compositions, sizes, and structure without any filtration. Transmission electron microscopy (TEM) confirmed particle sizes below 5 nm. Energy dispersive X-ray analysis (EDXA) confirmed the chemical composition of these samples. X-ray diffraction (XRD) showed a chalcopyrite-type structure with crystallite size of about 2 nm. No difference has been observed between batch and continuous synthesis processes. Cu x InS2 and Cu x InSe2 nanoparticles, with x < 1, have been also synthesized and identified. Simulation using a commercial software confirmed the difference between copper poor (Cu x InS2) and copper rich (CuInS2) chalcopyrite structures. Conventional spray deposition techniques have been used to form relatively thin films on solid substrates.  相似文献   

16.
We have reported the results of investigations of the structure and chemical and phase compositions of the amorphous Ni50Ti32Hf18 alloy prepared by rapid quenching from melt by spinning and subjected to heat treatments. The specific features of the fine polycrystalline alloy structure formation depending on the heat-treatment mode have been studied by transmission and scanning electron microscopy, chemical microanalysis, electron diffraction, and X-ray diffraction analysis. According to the data on the temperature behavior of electrical resistivity, critical temperatures of devitrification and subsequent thermoelastic martensitic transformation B2 → B19′ have been determined. The mechanical properties in different heat-treatment modes have been investigated.  相似文献   

17.
Polyaniline/Zn0.5Cu0.5Fe2O4 nanocomposite was synthesized by a simple, general and inexpensive in-situ polymerization method in w/o microemulsion. The effects of polyaniline coating on the magnetic properties of Zn0.5Cu0.5Fe2O4 nanoparticles were investigated. The structural, morphological and magnetic properties of as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM) and magnetic measurements. The morphology analysis confirmed that polyaniline was deposited on the porous surface of magnetic Zn0.5Cu0.5Fe2O4. It was shown that the saturation magnetization and coercivity of Zn0.5Cu0.5Fe2O4 decreased after polyaniline coating, which can be interpreted by the interparticle dipole–dipole interactions that contributed to magnetic anisotropy and changed the magnetic properties of the nanoparticles. PACS  74.25.Ha; 81.05.-t; 81.05.Lg  相似文献   

18.
The effect of high pressures up to 70 GPa on single-and polycrystalline samples of yttrium iron garnet Y357Fe5O12 is studied by Mössbauer absorption spectroscopy (for the 57Fe nucleus) in a diamond-anvil cell. It is found that the hyperfine magnetic field Hhf at 57Fe nuclei vanishes abruptly at a pressure of 48 ± 2 GPa, which indicates the transition of the crystal from the ferrimagnetic state to nonmagnetic one. The magnetic transition is irreversible. When the pressure decreases, the magnetic state is not recovered and the garnet remains nonmagnetic until zero pressure. The behavior of the quadrupole splitting and isomer shift shows that, simultaneously with the magnetic transition, irreversible electron and possibly spin transitions occur with changes in the local crystalline structure. The mechanisms of the magnetic collapse are discussed.  相似文献   

19.
Magnetization M(H,T) in magnetic fields H up to 90 kOe and at temperatures 2 K ≤ T < T c (where Tc is the superconducting transition temperature), along with magnetic susceptibility χ(T) in the normal state T c < T < 400 K for optimally oxygen-doped samples of YBa2Cu3O6.92 with varying degrees of defects in the crystal structure, are studied to determine the influence of structural inhomogeneity on the electron systems characteristics of cuprate superconductors. It is shown that the existence of structural inhomogeneity of samples leads to the manifestation of peculiarities appropriate to pseudogap regime in their properties.  相似文献   

20.
The magnetic environments of Cu2+-doped potassium hydrogen citrate (C6H7KO7) complex have been identified by electron paramagnetic resonance (EPR) technique. The angular variation of the EPR spectra has shown that three different Cu2+ complexes are located in different chemical environments, and each environment contains one magnetic Cu2+ site occupying substantial positions in the lattice and showing a very high angular dependence. The principal g and the hyperfine structure parameter (A) values of three sets of Cu2+ complex groups are determined. The covalency parameter, mixing coefficients and Fermi-contact term of the complex are obtained, and the ground-state wave function of the Cu2+ ion in the lattice has been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号