首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The single-crystalline β-wollastonite (β-CaSiO3) nanowires were prepared via a simple hydrothermal method, in the absence of any template or surfactant using cheap and simple inorganic salts as raw materials. Xonotlite [Ca6(Si6O17)(OH)2] nanowires were first obtained after hydrothermal treatment at a lower temperature of 200 °C for 24 h, and after being calcinated at 800 °C for 2 h, xonotlite nanowires completely transformed into β-wollastonite nanowires and the wire-like structure was preserved. The synthesized β-wollastonite nanowires had a diameter of 10–30 nm, and a length up to tens of micrometers, and the single-crystalline monoclinic parawollastonite structured β-wollastonite was identified by XRD with the space group of P21/a and cell constants of a=15.42 Å, b=7.325 Å, c=7.069 Å and β=95.38°. A possible growth mechanism of β-wollastonite nanowires was also proposed. The advantages of this method for the nanowire synthesis lie in the high yield, low temperature and mild reaction conditions, which will allow large-scale production at low cost.  相似文献   

2.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

3.
High pure Ce(DPM)4, Gd(DPM)3, Y(DPM)3 and Zr(DPM)4 (DPM=dipivaloylmethanate=2,2,6,6-tetramethyl-3,5-heptanedionato) powders were successfully synthesized from inorganic salts and HDPM in ethanol/aqueous solution followed by recrystallization from toluene. Freshly prepared samples have been characterized by elemental analysis, X-ray diffraction, thermogravimetry-differential thermal analysis, nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. Aged samples, obtained by exposing fresh ones into air for 30 days, were also represented. Various structures, stabilities and volatilities result from different metal atoms and coordination numbers. Those metal β-diketonate chelates are served as precursors of metalorganic chemical vapor deposition for single and multi-component oxide thin films.  相似文献   

4.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

5.
This paper reports the growth and spectral properties of 3.5 at% Nd3+:LaVO4 crystal with diameter of 20×15 mm2 which has been grown by the Czochralski method. The spectral parameters were calculated based on Judd–Ofelt theory. The intensity parameters Ωλ are: Ω2=2.102×10−20 cm2, Ω4=3.871×10−20 cm2, Ω6=3.235×10−20 cm2. The radiative lifetime τr is 209 μs and calculated fluorescence branch ratios are: β1(0.88μm)=45.2, β2(1.06μm)=46.7, β3(1.34μm)=8.1. The measured fluorescence lifetime τf is 137 μm and the quantum efficiency η is 65.6%. The absorption band at 808 nm wavelength has an FWHM of 20 nm. The absorption and emission cross sections are 3×10−20 and 6.13×10−20 cm2, respectively.  相似文献   

6.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

7.
This paper reports the detail synthesis of a new kind of metal iodate, anhydrous (LiFe1/3)(IO3)2, from aqueous solutions. The synthesized compound shows spinal morphology and is chemical stable up to 400°C. The iodate shows paramagnetic behavior from room temperature down to 4.2 K. At room temperature, the new compound has a hexagonal structure with the lattice parameters a=5.4632(2) Å, c=5.0895(6) Å, Z=1, space group of P63.  相似文献   

8.
A new crystal of Nd3+:Sr3Y(BO3)3 with dimension up to 25×35 mm2 was grown by Czochralski method. Absorption and emission spectra of Nd3+: Sr3Y(BO3)3 were investigated . The absorption band at 807 nm has a FWHM of 18 nm. The absorption and emission cross sections are 2.17×10−20 cm2 at 807 nm and 1.88×10−19 cm2 at 1060 nm, respectively. The luminescence lifetime τf is 73 μs at room temperature  相似文献   

9.
The Ca3Y2(BO3)4:Er3+ crystal with a size up to 20 mm×30 mm was grown by the Czochralski method. The absorption spectrum was measured and its absorption peaks were assigned to the corresponding transitions between the Er3+ energy levels. A broad emission spectrum from 1429.4 to 1662.8 nm was exhibited from 530 nm wavelength pumping. This crystal is promising as a tunable infrared laser crystal.  相似文献   

10.
The MoS2 nanowires with diameters of 4 nm and lengths of 50 nm were synthesized by a hydrothermal method using 0.36 g MoO3 and 1.8 g Na2S as precursors in 0.4 mol/l HCl solution at 260°C. The products are characterized by XRD, XPS, TEM, HTEM and BET. Results show that the as-prepared MoS2 nanowires consist of 1–10 sulfide layers with BET surface areas of 107 m2/g. The possible reaction route and the formation mechanism of the MoS2 nanowires are discussed. The effects of exterior conditions such as pH value, temperature, concentration of precursors and additives on the particle size and morphology of MoS2 crystallites were investigated.  相似文献   

11.
Uniform, submicron BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid–solid reaction method mainly via two simple steps: firstly, BaO2·H2O2 submicron particles of about 130–450 nm were precipitated from the reaction of BaCl2 and H2O2 in a slightly alkaline (pH 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2·H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 °C for 10 h. The as-obtained products were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy.  相似文献   

12.
An atmospheric pressure chemical vapor infiltration (CVI) process without metallic catalysts was applied for the growth of SiC nanowires within stacked SiC fiber fabrics. We investigated the effect of the concentration of a reactant gas (CH3SiCl3, MTS) on the growth behavior and microstructure of the SiC nanowires. At high concentration of MTS in a H2+MTS mixture gas, one-dimensional (1D) SiC deposits with diameters of several hundreds of nanometers were formed. Microstructures of the 1D SiC deposits exhibited a strong positional dependency throughout the thickness direction of the stacked fabric due to a depletion of the MTS gas. On the other hand, single-crystalline SiC nanowires with average diameters of 50–60 nm could be obtained at a low concentration of MTS. The SiC nanowires also exhibited a homogeneous growth both in the plane of each fabric layer and throughout the thickness of the sample.  相似文献   

13.
In this study, single-crystal γ-MnO2 nanowires have been successfully synthesized at room temperature in the absence of catalysts or templates, the diameter was found to be ca. 10–20 nm and the characteristic lengths up to several micrometers. The crystal phase of nanowires was confirmed by XRD and TEM measurements. Further, a dissolution– condensation–recrystallization process was proposed for the formation of nanowires under the room temperature condition.  相似文献   

14.
The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2–CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer–Emmett–Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PTx conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH)2.

Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area (SBET=6–10 m2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.  相似文献   


15.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

16.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

17.
Silicon carbide (SiC) nanowires were prepared by the gas pressure annealing of SiBONC powders, which were synthesized by pyrolysis of a polymeric precursor. The yield, morphology and composition of the nanowires were influenced by the Si/B ratio in the original ceramic powders, annealing temperature and atmosphere. Annealing temperatures between 1500 and 1600 °C and Si/B molar ratios between 70:30 to 60:40 were suitable for growth of the nanowires. When annealing in an argon (Ar) atmosphere, the SiC nanowires contained little oxygen (O); and the diameters ranged from 20 to 200 nm. Then annealing in a nitrogen (N2) atmosphere, the nanowires were thicker and rougher, and consisted of a relatively high level of nitrogen. Varied shapes and morphologies of the nanowires were observed for different synthesis conditions. The present novel method makes possible the large-scale fabrication of β-SiC nanowires.  相似文献   

18.
NaBi(WO4)2 (NBW) crystals have been grown for the first time by modified-Bridgman method. Influences of some factors on the crystal growth process are discussed. X-ray powder diffraction experiments show that the unit cell parameters of NBW crystal are a=b=0.5284 nm, c=1.1517 nm, and V=0.3215 nm3. The differential thermal analysis shows that the NBW crystal melts at 923°C.  相似文献   

19.
Nickel-incorporated FeS2 single crystals with various Ni compositions of Fe0.99S2:Ni0.01, Fe0.98S2:Ni0.02, Fe0.96S2:Ni0.04, and Fe0.9S2:Ni0.1 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent. Physical properties of the Ni-incorporated FeS2 single crystals were characterized using X-ray diffraction, Raman spectroscopy, electrical conductivity, and photoconductivity (PC) measurements. By means of the analyses of the X-ray diffraction patterns, the whole series of Ni-doped FeS2 single crystals were determined to be single-phase and isostructural. Raman spectroscopy of the Ni-doped FeS2 crystals was carried out at room temperature. Raman resonant peaks of the Ni-doped FeS2 crystals demonstrate an energy red-shift behavior with respect to the increase of the dopant densities. Conductivity measurements show the resistivity of the Ni-doped FeS2 decreased as the doping concentration of Ni is increased. Nickel is an n-type dopant, which behaves like a donor level existed near the conduction band edge of the synthetic FeS2. On the other hand, dopant effect of nickel on the synthetic FeS2 also destroys the photoconductive sensitivity in the photoconductivity measurements.  相似文献   

20.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号