首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strong correlation among calculated Nucleus-Independent Chemical Shift (NICS) values, molecular planarity, and the observed two-photon absorption (TPA) values was found for a series of closely matched expanded porphyrins. The expanded porphyrins in question consisted of [26]hexaphyrin, [28]hexaphyrin, rubyrin, amethyrin, cyclo[6]pyrrole, cyclo[7]pyrrole, and cyclo[8]pyrrole containing 22, 24, 26, 28, and 30 pi-electrons. Two of the systems, [28]hexaphyrin and amethyrin, were considered to be antiaromatic as judged from a simple application of Hückel's [4n + 2] rule. These systems displayed positive NICS(0) values (+43.5 and +17.1 ppm, respectively) and gave rise to TPA values of 2600 and 3100 GM, respectively. By contrast, a set of congeners containing 22, 26, and 30 pi-electrons (cyclo[n]pyrrole, n = 6, 7, and 8, respectively) were characterized by a linear correlation between the NICS and TPA values. In the case of the oligopyrrolic macrocycles containing 26 pi-electron systems, a further correlation between the molecular structure and various markers associated with aromaticity was seen. In particular, a decrease in the excited state lifetimes and an increase in the TPA values were seen as the flexibility of the systems increased. Based on the findings presented here, it is proposed that various readily measurable optical properties, including the two-photon absorption cross-section, can provide a quantitative experimental measure of aromaticity in macrocyclic pi-conjugated systems.  相似文献   

2.
We have comparatively investigated the photophysics of a series of bis-metal doubly N-confused hexaphyrins(1.1.1.1.1.1) using time-resolved fluorescence, femtosecond transient absorption, two-photon absorption measurements, and geometry-optimized ab initio calculations. Bis-Zn(II) and free-base doubly N-confused hexaphyrins exhibit well-resolved and red-shifted B- and Q-like absorption bands compared with porphyrins. Their allowed transitions are (pi,pi) transitions of the hexaphyrin ring, as confirmed by the HOMO and LUMO frontier orbitals based on ab initio calculations at the B3LYP/6-31G level. On the other hand, the absorption spectra of bis-Cu(II) and bis-Co(II) doubly N-confused hexaphyrins are relatively broad, presumably due to large couplings between the metal d-orbitals and pi-electrons of the hexaphyrin ring. Owing to these couplings, bis-Cu(II) and bis-Co(II) doubly N-confused hexaphyrins have much shorter excited-state lifetimes of 9.4 +/- 0.3 ps and 670 fs, respectively, than those (267 +/- 16 and 62.4 +/- 1.2 ps, respectively) of bis-Zn(II) and free-base doubly N-confused hexaphyrins. The two-photon absorption cross section (sigma(2)) values, which are believed to depend strongly on the ring planarity (pi-conjugation), are in line with the excited-state lifetime trends.  相似文献   

3.
Expanded porphyrins with appropriate metalation provide an excellent opportunity to study excited-state aromaticity. The coordinated metal allows the excited-state aromaticity in the triplet state to be detected through the heavy-atom effect, but other metalation effects on the excited-state aromaticity were ambiguous. Herein, the excited-state aromaticity of gold(III) hexaphyrins through the relaxation dynamics was revealed via electronic and vibrational spectroscopy. The SQ states of gold [26]- and [28]-hexaphyrins showed interconvertible absorption and IR spectra with those of counterparts in the ground-state, indicating aromaticity reversal. Furthermore, while the T1 states of gold [28]-hexaphyrins also exhibited reversed aromaticity according to Baird's rule, the ligand-to-metal charge-transfer state of gold [26]-hexaphyrins contributed by the gold metal showed non-aromatic features arising from the odd-number of π-electrons.  相似文献   

4.
We have investigated the electronic structures and photophysical properties of 5,10,20,25-tetrakis(pentafluorophenyl)-substituted hexaphyrin(1.1.1.1.1.1) (1) and its meso-keto (2) and meso-diketo derivatives (3) using various spectroscopic measurements. In conjunction with theoretical calculations, these analyses revealed fundamental structure-property relationships within this series, including unusual ground-state electronic structures with neutral, monoradical, and singlet biradical character. The meso-free species 1 is a representative 26 π-electron aromatic compound and shows characteristic spectroscopic features, including a sharp Soret band, well-defined Q-like bands, and a moderately long excited state lifetime (τ = 138 ps). In contrast, the meso-keto derivative 2 displays features characteristic of a neutral monoradical species at the ground state, including the presence of lower energy absorption bands in the NIR spectral region and a relatively short excited-state lifetime (13.9 ps). The meso-diketo 3 exhibits features similar to those of 2, specifically NIR absorptions and a short excited-state lifetime (9.7 ps). Compound 3 is thus assigned as being a ground-state singlet biradicaloid. Two photon absorption (TPA) measurements revealed comparatively large σ(2) values of 600 GM for 2 and 1600 GM for 3 with excitation at λ(ex) =1600 nm as compared to that observed for 1 (σ(2): 360 GM). The enhanced nonlinear optical properties of 2 and 3 are rationalized in terms of the open-shell electronic configuration allowing a large, field-induced fluctuation in the electron density (i.e., a large polarization). This interpretation is supported by theoretical evaluations of the static second hyperpolarizabilities (γ) and γ density analyses. Furthermore, nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) values and anisotropy of the induced current density (AICD) plots revealed a clear distinction in terms of the aromatic character of 1-3. Importantly, the open-shell radicaloid 2 and singlet biradicaloid 3 can be formally regarded as 27 π-electron nonaromatic and 26 π-electron aromatic species, respectively, constrained within a dominant 28 π-electron conjugated network. On the basis of the combined experimental and theoretical evidence, it is concluded that the meso-carbonyl groups of 2 and 3 play an important role in perturbing the macrocyclic π-conjugation of the parent hexaphyrin structure 1. In particular, they lead to the imposition of intrinsic radical and biradical character on the molecule as a whole and thus easy-to-discern modifications of the overall electronic effects.  相似文献   

5.
Treatment of hexakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1) (1) with CuCl in the presence of pyridine and molecular oxygen led to formation of doubly N-confused [26]hexaphyrin(1.1.1.1.1.1) 2 in a moderate yield through an unprecedented double pyrrolic rearrangement. Macrocycle 2 has been shown to serve as an effective bis-metal-coordinating ligand and exhibits attractive optical properties such as a sharp Soret-like band at 566 nm and low-energy fluorescence at 1058 nm.  相似文献   

6.
Aromaticity reversal in the lowest triplet state, or Baird's rule, has been postulated for the past few decades. Despite numerous theoretical works on aromaticity reversal, experimental study is still at a rudimentary stage. Herein, we investigate the aromaticity reversal in the lowest excited triplet state using a comparable set of [26]‐ and [28]hexaphyrins by femtosecond time‐resolved infrared (IR) spectroscopy. Compared to the relatively simple IR spectra of [26]bis(rhodium) hexaphyrin ( R26H ), those of [28]bis(rhodium) hexaphyrin ( R28H ) show complex IR spectra the region for the stretching modes of conjugated rings. Whereas time‐resolved IR spectra of R26H in the excited triplet state are dominated by excited state IR absorption peaks, while those of R28H largely show ground state IR bleaching peaks, reflecting the aromaticity reversal in the lowest triplet state. These contrasting IR spectral features serve as new experimental aromaticity indices for Baird's rule.  相似文献   

7.
Conformational preference and chemical stability of meso-aryl-substituted [26]hexaphyrins(1.1.1.1.1.1) ([26]ArH) depend upon meso-aryl substituents. Although only a planar and rectangular conformation (type-II conformation) has been identified for [26]ArH so far, we have demonstrated here that a different conformation with all the pyrroles pointing inward (type-I conformation) is preferred for [26]ArH (7 and 11-I) bearing small 2-thienyl or 3-thienyl substituents at 15- and 30-positions. Both type-I and type-II [26]ArH exhibit diatropic ring currents, reflecting aromatic character. Type-I [26]ArH, such as 7 and 11-I, have been shown to serve as an effective ligand for Pd(II) ions to provide bis-Pd(II) complexes 12 and 13 with N(3)C(1) coordination through facile C--H bond activation.  相似文献   

8.
Recently, hexaphyrins have emerged as a promising class of π‐conjugated molecules that display a range of interesting electronic, optical, and conformational properties, including the formation of stable Möbius aromatic systems. Besides the Möbius topology, hexaphyrins can adopt a variety of conformations with Hückel and twisted Hückel topologies, which can be interconverted under certain conditions. To determine the optimum conditions for viable Möbius topologies, the conformational preferences of [26]‐ and [28]hexaphyrins and the dynamic interconversion between the Möbius and Hückel topologies were investigated by density functional calculations. In the absence of meso substituents, [26]hexaphyrin prefers a planar dumbbell conformation, strongly aromatic and relatively strain free. The Möbius topology is highly improbable: the most stable tautomer is 33 kcal mol?1 higher in energy than the global minimum. On the other hand, the Möbius conformer of [28]hexaphyrin is only 6.5 kcal mol?1 higher in energy than the most stable dumbbell conformation. This marked difference is due to aromatic stabilization in the Möbius 4n electron macrocycle as opposed to antiaromatic destabilization in the 4n+2 electron system, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity. For [28]hexaphyrins, the computed activation barrier for interconversion between the Möbius aromatic and Hückel antiaromatic conformers ranges from 7.2 to 10.2 kcal mol?1, in very good agreement with the available experimental data. The conformation of the hexaphyrin macrocycle is strongly dependent on oxidation state and solvent, and this feature creates a promising platform for the development of molecular switches.  相似文献   

9.
Expanded porphyrins with appropriate metalation provide an excellent opportunity to study excited‐state aromaticity. The coordinated metal allows the excited‐state aromaticity in the triplet state to be detected through the heavy‐atom effect, but other metalation effects on the excited‐state aromaticity were ambiguous. Herein, the excited‐state aromaticity of gold(III) hexaphyrins through the relaxation dynamics was revealed via electronic and vibrational spectroscopy. The SQ states of gold [26]‐ and [28]‐hexaphyrins showed interconvertible absorption and IR spectra with those of counterparts in the ground‐state, indicating aromaticity reversal. Furthermore, while the T1 states of gold [28]‐hexaphyrins also exhibited reversed aromaticity according to Baird's rule, the ligand‐to‐metal charge‐transfer state of gold [26]‐hexaphyrins contributed by the gold metal showed non‐aromatic features arising from the odd‐number of π‐electrons.  相似文献   

10.
Protonation of meso‐aryl [28]hexaphyrins(1.1.1.1.1.1) triggered conformational changes. Whereas protonation with trifluoroacetic acid led to the formation of monoprotonated Möbius aromatic species, protonation with methanesulfonic acid led to the formation of diprotonated triangular antiaromatic species. A peripherally hexaphenylated [28]hexaphyrin was rationally designed and prepared to undergo diprotonation to favorably afford a triangular‐shaped antiaromatic species.  相似文献   

11.
Youfu K  Osuka A 《Organic letters》2005,7(20):4381-4384
[reaction: see text] Nucleophilic addition of triphenylphosphine to neutral meso-hexakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1) (1) provided a stable phosphonium ylide of [28]hexaphyrin (3), which was quantitatively oxidized to its 26pi-counterpart (4) that exhibited a planar and rectangular conformation and a diatropic ring current.  相似文献   

12.
Singly N-confused [26] and [28]hexaphyrins (4, 5) with planar and twisted structures, respectively, were prepared via the acid catalyzed [3 + 3] condensation of N-confused and regular tripyrrane precursors. Hückel aromaticity is observed for [26]hexaphyrin, while the [28]hexaphyrin and its mono-Pd(II) complex exhibit "nonaromaticity" in spite of their M?bius-type structures, judging from the spectroscopic features and theoretical calculations.  相似文献   

13.
Treatment of various hydroquinones and catechols with meso-pentafluorophenyl [26]hexaphyrin(1.1.1.1.1.1) provided the corresponding quinones quantitatively.  相似文献   

14.
meso‐Hexakis(pentafluorophenyl)‐substituted neutral hexaphyrin with a 26π‐electronic circuit can be regarded as a real homolog of porphyrin with an 18π‐electronic circuit with respect to a quite flat molecular structure and strong aromaticity. We have investigated additional aromaticity enhancement of meso‐hexakis(pentafluorophenyl)[26]hexaphyrin(1.1.1.1.1.1) by deprotonation of the inner N? H groups in the macrocyclic molecular cavity to try to induce further structural planarization. Deprotonated mono‐ and dianions of [26]hexaphyrin display sharp B‐like bands, remarkably strong fluorescence, and long‐lived singlet and triplet excited‐states, which indicate enhanced aromaticity. Structural, spectroscopic, and computational studies have revealed that deprotonation induces structural deformations, which lead to a change in the main conjugated π‐electronic circuit and cause enhanced aromaticity.  相似文献   

15.
Suzuki M  Osuka A 《Organic letters》2003,5(21):3943-3946
[reaction: see text] Acid-catalyzed reactions of 5-(2',3',4',5',6'-pentafluorophenyl)dipyrromethane with aryl aldehydes and of 5-(aryl)dipyrromethanes with 2,3,4,5,6-pentafluorobenzaldehyde allowed the preparation of a variety of meso-aryl [26]hexaphyrins.  相似文献   

16.
Direct functionalization of aromatic substituents on [28]hexaphyrin was achieved by Ir-catalyzed borylation with the Smith-Miyaura-Hartwig protocol. High para selectivity was observed in the reaction on 2,6-dichlorophenyl and 2,6-dimethoxyphenyl substituents of [28]hexaphyrin. The reaction with [26]hexaphyrin resulted only in reduction of the substrate to provide [28]hexaphyrin without borylation, thus highlighting the importance of the oxidation state of substrates in this catalytic transformation. The borylated hexaphyrin can be used for Suzuki-Miyaura cross-coupling reaction.  相似文献   

17.
The reaction of [26]hexaphyrin with triethylamine in the presence of BF3?OEt2 and O2 furnished a diastereomeric mixture of a diethylamine‐bearing [28]hexaphyrin as a rare example of a Möbius aromatic metal‐free expanded porphyrin. The Möbius aromaticity of these molecules is large, as indicated by their large diatropic ring currents, which are even preserved at 100 °C, owing to their internally multiply bridged robust structure with a smooth conjugation network. These molecules were reduced with NaBH4 to give an antiaromatic [28]hexaphyrin, and were oxidized with MnO2 to give aromatic [26]hexaphyrins, both through a Möbius‐to‐Hückel topology switch induced by a C? N bond cleavage.  相似文献   

18.
A peripherally strapped [28]hexaphyrin takes a rectangular conformation and exhibits antiaromatic character. A cyclophane‐type dimer consisting of such [28]hexaphyrins was synthesized from hexakis(pentafluorophenyl) [26]hexaphyrin via SNAr reaction with allyl alcohol, one‐pot intra‐ and intermolecular olefin metathesis under improved Hoveyda–Grubbs catalysis, and final reduction with NaBH4. The cyclophane‐type structures of [26]‐ and [28]hexaphyrin dimers have been revealed by X‐ray analysis. Studies on the structural, optical, and electronic properties have led to a conclusion that there is no favorable electronic interaction between the two [28]hexaphyrin segments and thus no indication of 3D aromaticity.  相似文献   

19.
Mori S  Osuka A 《Inorganic chemistry》2008,47(10):3937-3939
Au(III)Cu(III) and Au(III)Rh(I) heterobismetal complexes of meso-aryl-substituted [26]hexaphyrin were rationally prepared from a monometal Au(III) complex. The Au(III)Cu(III) complex is an aromatic molecule with a rectangular shape, while Au(III)Rh(I) complexes are out-of-plane macrocycles, being either aromatic or antiaromatic depending upon the number of conjugated pi electrons. The 26pi Au(III)Rh(I) complex was converted into an aromatic and planar 26pi Au(III)Rh(III) complex via double C-H bond activation upon refluxing in pyridine.  相似文献   

20.
Two synthetic methods are developed for halogenations of meso-hexakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1); one is regioselective trans-vicinal-dichlorination with sulfuryl chloride and the other is acid-assisted hydrohalogenation followed by oxidation with DDQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号