首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face.  相似文献   

2.
In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.  相似文献   

3.
A double-quantum homonuclear correlation nuclear magnetic resonance experiment for dipolar-coupled half-integer quadrupolar nuclei in solids is presented. The experiment is based on rotary resonance dipolar recoupling and uses bracketed spin-lock pulses to excite double-quantum coherence and later to convert it to the zero-quantum one. A central-transition-selective pi pulse at the beginning of the t1 evolution period differentiates coherence transfer pathways of double-quantum coherences arising from coupled spins and from a single spin, so that the latter can be efficiently filtered out by phase cycling. The experiment was tested on an aluminophosphate molecular sieve AlPO4-14, a material with a variety of aluminum quadrupolar coupling constants, isotropic chemical shifts and homonuclear distances. In a two-dimensional spectrum aluminum dipolar couplings with internuclear distances between 2.9 and 5.5 A were resolved. Although the experiment requires an application of weak radio-frequency fields, frequency offsets did not affect its performance crucially.  相似文献   

4.
Scalar (J) couplings in solid-state NMR spectroscopy are sensitive to covalent through-bond interactions that make them informative structural probes for a wide range of complex materials. Until now, however, they have been generally unsuitable for use in isotopically enriched solids, such as proteins or many inorganic solids, because of the complications presented by multiple coupled but nonisolated spins. Such difficulties are overcome by incorporating a z-filter that results in a robust method for measuring pure J-coupling modulations between selected pairs of nuclei in an isotopically enriched spin system. The reliability of the new experimental approach is established by using numerical simulations and tested on fully (13)C-labeled polycrystalline L-alanine. It is furthermore shown to be applicable to partially enriched systems, when used in combination with a selective double-quantum (DQ) filter, as demonstrated for the measurement of (2)J((29)Si-O-(29)Si) couplings in a 50% (29)Si-enriched surfactant-templated layered silicate lacking long-range 3D crystallinity. J-coupling constants are obtained with sufficient accuracy to distinguish between different (29)Si-O-(29)Si pairs, shedding insight on the local structure of the silicate framework. The new experiment is appropriate for fully or partially enriched liquid or solid samples.  相似文献   

5.
Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.  相似文献   

6.
One key bottleneck of solid-state NMR spectroscopy is that 1H NMR spectra of organic solids are often very broad due to the presence of a strong network of dipolar couplings. We have recently suggested a new approach to tackle this problem. More specifically, we parametrically mapped errors leading to residual dipolar broadening into a second dimension and removed them in a correlation experiment. In this way pure isotropic proton (PIP) spectra were obtained that contain only isotropic shifts and provide the highest 1H NMR resolution available today in rigid solids. Here, using a deep-learning method, we extend the PIP approach to a second dimension, and for samples of L-tyrosine hydrochloride and ampicillin we obtain high resolution 1H-1H double-quantum/single-quantum dipolar correlation and spin-diffusion spectra with significantly higher resolution than the corresponding spectra at 100 kHz MAS, allowing the identification of previously overlapped isotropic correlation peaks.  相似文献   

7.
We show how powder samples at natural isotopic abundance can be assigned to crystal structures by using high-resolution proton and carbon-13 solid-state NMR spectra in combination with first principles calculations. Homonuclear proton double-quantum spectra in combination with through-bond proton-carbon HSQC spectra are used to assign the NMR spectra. We then show that the proton chemical shifts can be included in the process of assigning the spectra to a crystal structure using first principles calculations. The method is demonstrated on the K salt of penicillin G.  相似文献   

8.
We present a quantum chemical ab initio study which demonstrates a new combined experimental and theoretical approach, whereby a comparison of calculated and experimental (1)H NMR chemical shifts allows the elucidation of structural arrangements in solid-state molecular ensembles, taking advantage of the marked sensitivity of the (1)H chemical shift to intermolecular interactions. Recently, Brown et al. have shown that, under fast magic-angle spinning (MAS) at 35 kHz, the resolution in a (1)H NMR spectrum of the solid phase of an alkyl-substituted hexabenzocoronene (HBC) derivative is sufficient to observe the hitherto unexpected resolution of three distinct aromatic resonances ( J. Am. Chem. Soc. 1999, 121, 6712). Exploiting the additional information about proton proximities provided by (1)H double-quantum (DQ) MAS NMR spectroscopy, it was shown that the results are qualitatively consistent with the aromatic cores packing in a manner similar to that in unsubstituted HBC. Using the HBC-C(12) molecule as an example, we show here that the new combined experimental and theoretical approach allows the observed (1)H chemical shifts to be related in a quantitative manner to the intermolecular structure. In the quantum chemical calculations, a series of model systems of stacked HBC oligomers are used. On account of the marked dependence of the (1)H chemical shift to ring currents arising from nearby aromatic rings, the calculated (1)H chemical shifts are found to be very sensitive to the stacking arrangement of the HBC molecules. Moreover, the ring current effect is found to be particularly long range, with a considerable influence of the second neighbor, at a distance of 700 pm, being observed.  相似文献   

9.
《Chemical physics letters》1986,124(6):572-575
Violations of coherence transfer selection rules in multiple quantum NMR spectra of isotropic solutions are reported. In some cases these violations can be accounted for by strong coupling effects, as demonstrated via computer simulations. In many cases, however, the “forbidden” peaks likely arise due to differential relaxation rates of degenerate single quantum transitions of magnetically equivalent nuclei.  相似文献   

10.
High magnetic field and high spinning frequency one- and two-dimensional one-pulse MAS 19F NMR spectra of beta-ZrF4 and CeF4 were recorded and reconstructed allowing the accurate determination of the 19F chemical shift tensor parameters for the seven different crystallographic fluorine sites of each compound. The attributions of the NMR resonances are performed using the superposition model for 19F isotropic chemical shift calculation initially proposed by Bureau et al. (Bureau, B.; Silly, G.; Emery, J.; Buzaré, J.-Y. Chem. Phys. 1999, 249, 85-104). A satisfactory reliability is reached with a root-mean-square (rms) deviation between calculated and measured isotropic chemical shift values equal to 1.5 and 3.5 ppm for beta-ZrF4 and CeF4, respectively.  相似文献   

11.
The complex hydrogen-bonding arrangement in the biologically important molecule bilirubin IXalpha is probed by using 1H double-quantum (DQ) magic-angle spinning (MAS) NMR spectroscopy. Employing fast MAS (30 kHz) and a high magnetic field (16.4 T), three low-field resonances corresponding to the different hydrogen-bonding protons are resolved in a 1H MAS NMR spectrum of bilirubin. These resonances are assigned on the basis of the proton-proton proximities identified from a two-dimensional rotor-synchronized 1H DQ MAS NMR spectrum. An analysis of 1H DQ MAS spinning-sideband patterns for the NH protons in bilirubin allows the quantitative determination of proton-proton distances and the geometry. The validity of this procedure is proven by simulated spectra for a model three-spin system, which show that the shortest distance can be determined to a very high degree of accuracy. The distance between the lactam and pyrrole NH protons in bilirubin is determined to be 0.186 +/- 0.002 nm (corresponding to a dominant dipolar coupling constant of 18.5 +/- 0.5 kHz). The analysis also yields a distance between the lactam NH and carboxylic acid OH protons of 0.230 +/- 0.008 nm (corresponding to a perturbing dipolar coupling constant of 9.9 +/- 1.0 kHz) and an H-H-H angle of 122 +/- 4 degrees. Finally, a comparison of 1H DQ MAS spinning-sideband patterns for bilirubin and its dimethyl ester reveals a significantly longer distance between the two NH protons in the latter case.  相似文献   

12.
The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I=3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.  相似文献   

13.
Wu G  Wasylishen RE 《Inorganic chemistry》1996,35(11):3113-3116
The first observations of (31)P-(31)P indirect spin-spin (J) coupling in copper(I) phosphine complexes are reported for solid Cu(PPh(3))(2)X (X = NO(3)(-), BH(4)(-)). Values of (2)J((31)P,(31)P), 157 +/- 5 and 140 +/- 5 Hz for Cu(PPh(3))(2)NO(3) and Cu(PPh(3))(2)BH(4), respectively, have been obtained from two-dimensional (2D) J-resolved (31)P NMR spectra obtained under slow magic-angle spinning (MAS) conditions. In both complexes, the two phosphine ligands are crystallographically equivalent; thus, the two (31)P nuclei have identical isotropic chemical shifts. Under rapid sample spinning conditions, the (31)P MAS NMR spectra exhibit relatively sharp overlapping asymmetric quartets arising from (1)J((63/65)Cu,(31)P) and residual (63/65)Cu-(31)P dipolar interactions. No evidence of (2)J((31)P,(31)P) is apparent from the spectra obtained with rapid MAS; however, under slow MAS conditions there is evidence of homonuclear J-recoupling. Peak broadening due to heteronuclear dipolar interactions precludes measurement of (2)J((31)P,(31)P) from standard 1D (31)P MAS NMR spectra. It is shown that this source of broadening can be effectively eliminated by employing the 2D J-resolved experiment. For the two copper(I) phosphine complexes investigated in this study, the peak widths in the f(1) dimension of the 2D J-resolved (31)P MAS NMR spectra are about three times narrower than those found in the corresponding 1D (31)P MAS NMR spectra.  相似文献   

14.
A novel hexasodium disphosphopentamolybdate hydrate, Na6[P2Mo5O23]x7H2O, has been identified using X-ray powder diffraction, 1H, 23Na, and 31P magic-angle spinning (MAS) NMR, and 23Na multiple-quantum (MQ) MAS NMR. Powder XRD reveals that the hydrate belongs to the triclinic spacegroup P1 with cell dimensions a = 10.090(3) A, b = 15.448(5) A, c = 8.460(4) A, alpha = 101.45(6) degrees, beta = 104.09(2) degrees, gamma = 90.71(5) degrees, and Z = 2. The number of water molecules of crystallization has been determined on the basis of a quantitative evaluation of the 1H MAS NMR spectrum, the crystallographic unit cell volume, and a hydrogen content analysis. The 23Na MQMAS NMR spectra of Na6[P2Mo5O23]x7H2O, obtained at three different magnetic fields, clearly resolve resonances from six different sodium sites and allow a determination of the second-order quadrupolar effect parameters and isotropic chemical shifts for the individual resonances. These data are used to determine the quadrupole coupling parameters (CQ and eta Q) from simulations of the complex line shapes of the central transitions, observed in 23Na MAS NMR spectra at the three magnetic fields. This analysis illustrates the advantages of combining MQMAS and MAS NMR at moderate and high magnetic fields for a precise determination of quadrupole coupling parameters and isotropic chemical shifts for multiple sodium sites in inorganic systems. 31P MAS NMR demonstrates the presence of two distinct P sites in the asymmetric unit of Na6[P2Mo5O23].7H2O while the 31P chemical shielding anisotropy parameters, determined for this hydrate and for Na6[P2Mo5O23]x13H2O, show that these two hydrates can easily be distinguished using 31P MAS NMR.  相似文献   

15.
16.
Integrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, A iso, for each proton in the molecule. The Co..H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at g perpendicular. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex ( (14)N, coordinating and noncoordinating, (11)B and (13)C) are also reported.  相似文献   

17.
In this paper, we report on the use and limitations of the popular double‐quantum recoupling sequence back‐to‐back in studies of 31P‐31P spatial proximities in Pd‐phosphine complexes at medium field (9.38 T) under the conditions of fast MAS. The effects of internuclear distances in different spin systems and the impact of isotropic chemical shift and chemical shift anisotropy (CSA) offsets on the detectibility of SQ‐DQ correlations were of particular interest to us. Selected model compounds with these requirements in mind were synthesized. By optimization of the excitation times of SQ‐DQ correlations up to 4.6 Å could be obtained even in four‐spin systems; however, certain long‐range correlations may be weak or missing. Although under fast MAS, CSA values up to 270 ppm are well tolerated, in multi‐spin systems in cases of isotropic chemical shift offsets larger than 50 ppm, the DQ coherences cannot be properly excited. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K(+) ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies.  相似文献   

19.
The room temperature structure of Ba(5)Al(3)F(19) has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) (27)Al and ultrafast magic-angle-spinning (MAS) (19)F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba(5)Al(3)F(19). The (19)F isotropic chemical shift and (27)Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the (19)F and (27)Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the (19)F MAS NMR spectrum of Ba(5)Al(3)F(19). Variable-temperature 1D MAS (19)F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba(5)Al(3)F(19) is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.  相似文献   

20.
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号