首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics (MD) simulations generate a canonical ensemble only when integration of the equations of motion is coupled to a thermostat. Three extended phase space thermostats, one version of Nose-Hoover and two versions of Nose-Poincare, are compared with each other and with the Berendsen thermostat and Langevin stochastic dynamics. Implementation of extended phase space thermostats was first tested on a model Lennard-Jones fluid system; subsequently, they were implemented with our physics-based protein united-residue (UNRES) force field MD. The thermostats were also implemented and tested for the multiple-time-step reversible reference system propagator (RESPA). The velocity and temperature distributions were analyzed to confirm that the proper canonical distribution is generated by each simulation. The value of the artificial mass constant, Q, of the thermostat has a large influence on the distribution of the temperatures sampled during UNRES simulations (the velocity distributions were affected only slightly). The numerical stabilities of all three algorithms were compared with each other and with that of microcanonical MD. Both Nose-Poincare thermostats, which are symplectic, were not very stable for both the Lennard-Jones fluid and UNRES MD simulations started from nonequilibrated structures which implies major changes of the potential energy throughout a trajectory. Even though the Nose-Hoover thermostat does not have a canonical symplectic structure, it is the most stable algorithm for UNRES MD simulations. For UNRES with RESPA, the "extended system inside-reference system propagator algorithm" of the RESPA implementation of the Nose-Hoover thermostat was the only stable algorithm, and enabled us to increase the integration time step.  相似文献   

2.
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.  相似文献   

3.
4.
5.
We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat.  相似文献   

6.
This paper proposes a novel thermostat applicable to any particle-based dynamic simulation. Each pair of particles is thermostated either (with probability P) with a pairwise Lowe-Andersen thermostat [C. P. Lowe, Europhys. Lett. 47, 145 (1999)] or (with probability 1-P) with a thermostat that is introduced here, which is based on a pairwise interaction similar to the Nosé-Hoover thermostat. When the pairwise Nosé-Hoover thermostat dominates (low P), the liquid has a high diffusion coefficient and low viscosity, but when the Lowe-Andersen thermostat dominates, the diffusion coefficient is low and viscosity is high. This novel Nosé-Hoover-Lowe-Andersen thermostat is Galilean invariant and preserves both total linear and angular momentum of the system, due to the fact that the thermostatic forces between each pair of the particles are pairwise additive and central. We show by simulation that this thermostat also preserves hydrodynamics. For the (noninteracting) ideal gas at P = 0, the diffusion coefficient diverges and viscosity is zero, while for P > 0 it has a finite value. By adjusting probability P, the Schmidt number can be varied by orders of magnitude. The temperature deviation from the required value is at least an order of magnitude smaller than in dissipative particle dynamics (DPD), while the equilibrium properties of the system are very well reproduced. The thermostat is easy to implement and offers a computational efficiency better than (DPD), with better temperature control and greater flexibility in terms of adjusting the diffusion coefficient and viscosity of the simulated system. Applications of this thermostat include all standard molecular dynamic simulations of dense liquids and solids with any type of force field, as well as hydrodynamic simulation of multiphase systems with largely different bulk viscosities, including surface viscosity, and of dilute gases and plasmas.  相似文献   

7.
We propose two new thermostats which can be employed in computer simulations to ensure that two different variants of the configurational temperature fluctuate around their equilibrium values. These new thermostats differ from one previously introduced by Delhommelle and Evans [Mol. Phys. 99, 1825 (2001)] in several important ways. First, our thermostats are derived in the same spirit as the Nosé-Hoover thermostat and therefore generate the canonical phase-space distribution. Second, our thermostats involve simpler equations of motion, which do not involve spatial gradients of the configurational temperature. They do not suffer from problems stemming from stiff equations of motion and furthermore, in large temperature perturbation simulations, the measured temperature follows the set-point temperature without any overshoot, and with good damping of oscillations. We show that both of our configurational thermostats are special cases of a more general set of Nosé-Hoover equations proposed by Kusnezov et al. [Ann. Phys. 204, 155 (1990)]. The new thermostats are expected to be highly useful in nonequilibrium simulations, particularly those characterized by spatial inhomogeneities. They should also find applicability in simulations involving large changes in temperature over small time scales, such as temperature quench molecular dynamics and radiation damage modeling.  相似文献   

8.
In this article, implementation of periodic boundary conditions (PBC) into physics‐based coarse‐grained UNited RESidue (UNRES) force field is presented, which replaces droplet‐like restraints previously used. Droplet‐like restraints are necessary to keep multichain systems together and prevent them from dissolving to infinitely low concentration. As an alternative for droplet‐like restrains cuboid PBCs with imaging of the molecules were introduced. Owing to this modification, artificial forces which arose from restraints keeping a droplet together were eliminated what leads to more realistic trajectories. Due to computational reasons cutoff and smoothing functions were introduced on the long range interactions. The UNRES force field with PBC was tested by performing microcanonical simulations. Moreover, to asses the behavior of the thermostat in PBCs Langevin and Berendsen thermostats were studied. The influence of PBCs on association pattern was compared with droplet‐like restraints on the ββα hetero tetramer 1 protein system. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short‐coming has little impact on structural and short‐time dynamic properties, it can be shown that dynamics in the long‐time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD‐region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard–Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed Nose–Hoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self‐diffusion characteristic for stochastic dynamics are eliminated. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.  相似文献   

11.
Gas-liquid nucleation of 1000 Lennard-Jones atoms is simulated to evaluate temperature regulation methods and methods to obtain nucleation rate. The Berendsen and the Andersen thermostats are compared. The Berendsen thermostat is unable to control the temperature of clusters larger than the critical size. Independent of the thermostating method the velocities of individual atoms and the translational velocities of clusters up to at least six atoms are accurately described by the Maxwell velocity distribution. Simulations with the Andersen thermostat yield about two times higher nucleation rates than those with the Berendsen thermostat. Nucleation rate is extracted from the simulations by direct observation of times of nucleation onset and by the method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)]. Compared to the direct observation, the nucleation rates obtained from the method of Yasuoka and Matsumoto are higher by a factor of 3.  相似文献   

12.
We present new generalized-ensemble molecular dynamics simulation algorithms, which we refer to as the multibaric-multithermal molecular dynamics. We describe three algorithms based on (1) the Nosé thermostat and the Andersen barostat, (2) the Nosé-Poincaré thermostat and the Andersen barostat, and (3) the Gaussian thermostat and the Andersen barostat. The multibaric-multithermal simulations perform random walks widely both in the potential-energy space and in the volume space. Therefore, one can calculate isobaric-isothermal ensemble averages in wide ranges of temperature and pressure from only one simulation run. We test the effectiveness of the multibaric-multithermal algorithm by applying it to a Lennard-Jones 12-6 potential system.  相似文献   

13.
Lowe-Andersen (LA) temperature controlling method [C. P. Lowe, Europhys. Lett. 47, 145 (1999)] is applied in a series of mesoscopic polymer simulations to test its validity and efficiency. The method is an alternative for dissipative particle dynamics simulation (DPD) technique which is also Galilean invariant. It shows excellent temperature control and gives correct radial distribution function as that from DPD simulation. The efficiency of LA method is compared with other typical DPD integration schemes and is proved to be moderately efficient. Moreover, we apply this approach to diblock copolymer microphase separation simulations. With LA method, we are able to reproduce all the results from the conventional DPD simulations. The calculated structure factors of the microphases are consistent with the experiments. We also study the microphase evolution dynamics with increasing chiN and find that the bath collision frequency Gamma does not affect the order of appearing phases. Although the thermostat does not affect the surface tension, the order-disorder transition (ODT) is somewhat sensitive to the values of Gamma, i.e., the ODT is nonmonotonic with increasing Gamma. The dynamic scaling law is also tested, showing that the relation obeys the Rouse theory with various Gamma.  相似文献   

14.
The effectiveness of five temperature control algorithms for dual control volume grand canonical molecular dynamics is investigated in the study of hydrogen atom diffusion in a palladium bulk. The five algorithms, namely, Gaussian, generalized Gaussian moment thermostat (GGMT), velocity scaling, Nosé-Hoover (NH), and its enhanced version Nosé-Hoover chain (NHC) are examined in both equilibrium and nonequilibrium simulation studies. Our numerical results show that Gaussian yields the most inaccurate solutions for the hydrogen-palladium system due to the high friction coefficient generated from the large velocity fluctuation of hydrogen, while NHC, NH, and GGMT produce the most accurate temperature and density profiles in both equilibrium and nonequilibrium cases with their feedback control mechanisms. However, this feedback control also overestimates the self-diffusion coefficients in equilibrium systems and the diffusion coefficient in nonequilibrium systems. Velocity scaling thermostat produces slight inhomogeneities in the temperature and density profiles, but due to the dissipated heat accumulated in the control volumes it still yields accurate self-diffusion coefficients that are in good agreement with the experimental data at a wide range of temperatures while others tend to deviate.  相似文献   

15.
Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation[J. Chem. Phys. 147 , 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme[J. Chem. Phys. 147 , 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation is proposed for understanding efficient stochastic thermostatting processes with molecular dynamics.  相似文献   

16.
We study the properties of a one-dimensional (1D) granular gas consisting of N hard rods on a line of length L (with periodic boundary conditions). The particles collide inelastically and are fluidized by a heat bath at temperature Tb and viscosity gamma. The analysis is supported by molecular dynamics simulations. The average properties of the system are first discussed, focusing on the relations between granular temperature Tg=mv2, kinetic pressure, and density rho=N/L. Thereafter, we consider the fluctuations around the average behavior obtaining a slightly non-Gaussian behavior of the velocity distributions and a spatially correlated velocity field; the density field displays clustering: this is reflected in the structure factor which has a peak in the k approximately 0 region suggesting an analogy between inelastic hard core interactions and an effective attractive potential. Finally, we study the transport properties, showing the typical subdiffusive behavior of 1D stochastically driven systems, i.e., approximately Dt(1/2), where D for the inelastic fluid is larger than the elastic case. This is directly related to the peak of the structure factor at small wave vectors.  相似文献   

17.
Using computer simulations, the electrophoretic motion of a positively charged colloid (macroion) in an electrolyte solution is studied in the framework of the primitive model. In this model, the electrolyte is considered as a system of negatively and positively charged microions (counterions and coions, respectively) that are immersed into a structureless medium. Hydrodynamic interactions are fully taken into account by applying a hybrid simulation scheme, where the charged ions (i.e., macroion and electrolyte), propagated via molecular dynamics, are coupled to a lattice Boltzmann (LB) fluid. In a recent electrophoretic experiment by Martin-Molina et al. [J. Phys. Chem. B 106, 6881 (2002)], it was shown that, for multivalent salt ions, the mobility mu initially increases with charge density sigma, reaches a maximum, and then decreases with further increase of sigma. The aim of the present work is to elucidate the behavior of mu at high values of sigma. Even for the case of monovalent microions, a decrease of mu with sigma is found. A dynamic Stern layer is defined that includes all the counterions that move with the macroion while subjected to an external electrical field. The number of counterions in the Stern layer, q(0), is a crucial parameter for the behavior of mu at high values of sigma. In this case, the mobility mu depends primarily on the ratio q(0)/Q (with Q the valency of the macroion). The previous contention that the increase in the distortion of the electric double layer (EDL) with increasing sigma leads to the lowering of mu does not hold for high sigma. In fact, it is shown that the deformation of the EDL decreases with the increase of sigma. The role of hydrodynamic interactions is inferred from direct comparisons to Langevin simulations where the coupling to the LB fluid is switched off. Moreover, systems with divalent counterions are considered. In this case, at high values of sigma the phenomenon of charge inversion is found.  相似文献   

18.
We present a systematic method for deriving reversible measure-preserving integrators for non-Hamiltonian systems such as the Nosé-Hoover thermostat and generalized Gaussian moment thermostat (GGMT). Our approach exploits the (non-Poisson) bracket structure underlying the thermostat equations of motion. Numerical implementation for the GGMT system shows that our algorithm accurately conserves the thermostat energy function. We also study position and momentum distribution functions obtained using our integrator.  相似文献   

19.
The shear viscosity of molten NaCl and KCl was calculated through equilibrium (EMD) and nonequilibrium molecular-dynamics (NEMD) simulations in the canonical (N,V,T) ensemble. Two rigid-ion potentials were investigated, namely, the Born-Mayer-Huggins-Tosi-Fumi potential and the Michielsen-Woerlee-Graaf-Ketelaar potential with the parameters proposed by Ladd. The NEMD simulations were performed using the SLLOD equations of motion [D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] with a Gaussian isokinetic thermostat and the results are compared with those obtained from Green-Kubo EMD (N,V,T) simulations and experimental shear viscosity data. The NEMD zero strain rate shear viscosity, eta(0), was obtained by fitting a simplified Carreau-type equation and by application of mode-coupling theory, i.e., a eta-gamma(1/2) linear relationship. The values obtained from the first method are found to be significantly lower than those predicted by the second. The agreement between the EMD and NEMD results with experimental data is satisfactory for the two potentials investigated. The ion-ion radial distribution functions obtained with the two rigid-ion potentials for both molten salts are discussed in terms of the differences between the two models.  相似文献   

20.
Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge‐carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed‐charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé–Hoover thermostat as well as simulations using a full self‐consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号