首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Results of an experimental and theoretical study of nonlinear acoustic effects (amplitude-dependent loss, resonance frequency shift, second and third harmonic generation, and sound by sound damping) in a limestone bar resonator are reported. The observed effects are analytically described in the framework of phenomenological equations of state with allowance for the low-frequency hysteretic nonlinearity and the high-frequency dissipative nonlinearity. Experimental and analytical dependences of nonlinear effects are compared to find the parameters of the hysteretic and dissipative nonlinearities of the limestone sample studied.  相似文献   

4.
5.
A nonlinear version of the resonance ultrasound spectroscopy (RUS) theory is presented as an extension of the RUS formalism to the treatment of microdamage characterized by nonlinear constitutive equations. General analytical equations are derived for the one-dimensional case, describing the excitation amplitude dependent shift in the resonance frequency and the generation of harmonics resulting from the interaction between bar modes due to the presence of either localized or volumetrically distributed nonlinearity. Solutions are obtained for classical cubic nonlinearity, as well as for the more interesting case of hysteresis nonlinearity. The analytical results are in excellent quantitative agreement with numerical calculations from a multiscale model. Finally, the analytical formulas are exploited to infer critical information about damage position, degree of nonlinearity, and width of the damage zone either from the shifts in resonance frequency occurring at different excitation modes, or from the shift and the harmonics predicted at a single mode. Unlike other techniques, the multi-mode-nonlinear RUS method does not require a spatial scan to locate the defect, as it lets different excitation modes, with different vibration patterns, probe the structure. Two general methods are suggested for inverting experimental data.  相似文献   

6.
Ikeda K  Fainman Y 《Optics letters》2006,31(23):3486-3488
We derive an equation that describes the nonlinear operation of a Fabry-Perot resonator with a large group index waveguide. Specifically, a silicon photonic crystal microcavity with two-photon-excited free carrier nonlinearity and Kerr nonlinearity is assumed. The equation clearly explains the bistability of the device and the reduction of the required pump energy for a specific nonlinear phase shift at an appropriate phase detuning from the resonance. We present a simple procedure to predict the required optical pump energy for the modulation and the resulting modulation depth by use of the equation and the device parameters.  相似文献   

7.
Windels F  Van Den Abeele K 《Ultrasonics》2004,42(1-9):1025-1029
A nonlinear version of resonance ultrasound spectroscopy (RUS) theory is presented. This is important for NDT-purposes as damage manifests itself more pronounced and in an earlier stage by changes in the nonlinear elastic constants. General equations are derived for the 1-D case, describing the interaction between the modes due to the presence of nonlinearity. An analytical solution of these equations is derived which predicts the shift of the resonance frequency versus amplitude in a bar with localized damage. The damage was modelled as a finite region, having a constant cubic nonlinearity, in an otherwise linear 1-D bar. The analytical expressions for the shifts in resonance frequency at different modes were used to infer information about the position, nonlinearity and width of the damage. Unlike other techniques, the proposed method does not require scanning to locate the defect, as it lets the different modes, each with a different vibration pattern, probe the structure.  相似文献   

8.
We have performed spectroscopic measurements of a superconducting qubit dispersively coupled to a nonlinear resonator driven by a pump microwave field. Measurements of the qubit frequency shift provide a sensitive probe of the intracavity field, yielding a precise characterization of the resonator nonlinearity. The qubit linewidth has a complex dependence on the pump frequency and amplitude, which is correlated with the gain of the nonlinear resonator operated as a small-signal amplifier. The corresponding dephasing rate is found to be close to the quantum limit in the low-gain limit of the amplifier.  相似文献   

9.
Under the action of the gravitational wave, the length of an optical resonator and, therefore, its resonance frequency change. In conventional resonators, this frequency shift is too small to be detected. We propose a method that provides a very high resonance frequency-versus-resonator length slope. As a result, a gravitational wave with an intensity of 10−21 can shift the resonance frequency by more than 10 kHz, which can easily be detected.  相似文献   

10.
We report quantitative measurements of the nonlinear response of a radio frequency mechanical resonator with a very high quality factor. We measure the noise-free transitions between the two basins of attraction that appear in the nonlinear regime, and find good agreement with theory. We measure the transition rate response to controlled levels of white noise, and extract the basin activation energy. This allows us to obtain precise values for the relevant frequencies and the cubic nonlinearity in the Duffing oscillator, with applications to parametric sensing.  相似文献   

11.
The automatic frequency control (AFC) circuit in conventional electron paramagnetic resonance (EPR) spectrometers automatically tunes the microwave source to the resonance frequency of the resonator. The circuit works satisfactorily for samples stable enough that the geometric relations in the resonance structure do not change in a significant way. When EPR signals are measured during in vivo experiments with small rodents, however, the distance between the signal source and the surface-coil detector can change rapidly. When a conventional AFC circuit keeps the oscillator tuned to the resonator under those conditions, the resultant frequency change may exceed +/-5 MHz and markedly shift the position of the EPR signal. Such a shift results in unacceptable effects on the spectra, especially when the experimenter is dealing with narrow EPR lines. The animal movement also causes a mismatching of the resonator and the 50-ohm transmission line. Direct results of this mismatching are increased noise; shifts in the position of the baseline; and a high probability of overdriving the signal preamplifier with consequent loss of the EPR signal. We therefore designed, built, and tested a new surface-coil resonator using varactor diodes for tuning the resonance frequency to the fixed frequency oscillator and for capacitive matching of the resonator to the 50-ohm transmission line. The performance of the automatic matching system was tested in vivo by measuring EPR spectra of lithium phthalocyanine implanted in rats. Stability and sensitivity of the spectrometer were evaluated by measuring EPR spectra with and without the use of the automatic matching system. The overall experimental performance of the spectrometer was found to significantly improve during in vivo experiments using the automatic matching system. Excellent matching between the 50-ohm transmission line and the resonator was maintained under all experimental circumstances that were tested. This should allow us now to carry out experiments that previously were not possible.  相似文献   

12.
This paper presents a theoretical and experimental study of the nonlinear flexural vibration of a cement-based material with distributed microcracks caused by an important deterioration mechanism, alkali-silica reaction (ASR). The general equation of motion is derived for the flexural vibration of a slender beam with the nonlinear hysteretic constitutive relationship for consolidated materials, and then an approximate formula for excitation-dependent resonance frequency is obtained. A downward shift of the resonance frequency is related to the nonlinearity parameters defined in the constitutive relationship. Vibration experiments are conducted on standard mortar bar samples undergoing progressive ASR damage. The absolute nonlinearity parameters are determined from these experimental results using the theoretical solution in order to investigate their dependence on the damage state of the material. With the progress of the ASR damage, the absolute value of the hysteresis nonlinearity parameter increases by as much as six times from the intact (undamaged) state in the sample with highly reactive aggregate; this is in contrast to a change of about 16% in the linear resonance frequency. It is demonstrated that the combined theoretical and experimental approach developed in this research can be used to quantitatively characterize ASR damage in mortar samples and other cement-based materials.  相似文献   

13.
《Comptes Rendus Physique》2012,13(5):454-469
We consider a cavity optomechanical cooling configuration consisting of a mechanical resonator (denoted as resonator b) and an electromagnetic resonator (denoted as resonator a), which are coupled in such a way that the effective resonance frequency of resonator a depends linearly on the displacement of resonator b. We study whether back-reaction effects in such a configuration can be efficiently employed for suppression of decoherence. To that end, we consider the case where the mechanical resonator is prepared in a superposition of two coherent states and evaluate the rate of decoherence. We find that no significant suppression of decoherence is achievable when resonator a is assumed to have a linear response. On the other hand, when resonator a exhibits Kerr nonlinearity and/or nonlinear damping the decoherence rate can be made much smaller than the equilibrium value provided that the parameters that characterize these nonlinearities can be tuned close to some specified optimum values.  相似文献   

14.
The shift in the resonance frequency of a two-port quartz surface acoustic wave (SAW) resonator operating as a gas sensor without a selective layer is studied versus the power of an SAW excited in the resonator. At working frequencies of the resonator (≈389 MHz) placed in the flow of moisture-containing nitrogen gas, an anomalously large positive shift of the resonance frequency is observed as the SAW power exceeds 1 mW. This shift is one order of magnitude larger than that due to the nonlinear amplitude-frequency effect, which is known for quartz SAW resonators. Possible physical mechanisms underlying this phenomenon are analyzed. Experimental data indicate that such a shift is associated with the influence of a powerful SAW on sorption processes taking place on the active surface of the resonator rather than being a direct consequence of heating of the SAW substrate by the powerful SAW.  相似文献   

15.
We undertake a detailed numerical study of the twin phenomenon of stochastic and vibrational resonance in a discrete model system in the presence of bichromatic input signal. A two parameter cubic map is used as the model that combines the features of both bistable and threshold systems. In addition to the results already shown for continuous systems, our analysis brings out several interesting features both for vibrational and stochastic resonance, including the existence of a cross over behavior between the two. In the regime of vibrational resonance, it is shown that the additional high frequency forcing can change the effective value of the system parameter resulting in the shift of the bistable window. In the case of stochastic resonance, the study reveals a fundamental difference between the bistable and threshold mechanisms in the response, with respect to multisignal input.  相似文献   

16.
The reflection frequency response and bistability characteristic of a ferromagnetic resonator are studied experimentally and theoretically. The resonator is a 25-µm-thick rectangular yttrium-iron-garnet film with perpendicular magnetization. A technique to construct the bistability characteristic of the resonator from its measured response to a pulsed signal is suggested. It is demonstrated that the microwave bistability results from the intrinsic nonlinearity of ferromagnetic resonance. It is found that the bistability characteristic can adequately be described on the basis of a dispersive-bistability model.  相似文献   

17.
Singh R  Azad AK  Jia QX  Taylor AJ  Chen HT 《Optics letters》2011,36(7):1230-1232
We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single-crystal strontium titanate (SrTiO?) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about a 43% shift in resonance frequency, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent dielectric constant of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature-sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.  相似文献   

18.
Prediction of crack growth and fatigue life estimation of metals using linear/nonlinear acousto-ultrasound methods is an ongoing issue. It is known that by measuring nonlinear parameters, the relative accumulated fatigue damage can be evaluated. However, there is still a need to measure two crack propagation states to assess the absolute residual fatigue life. A procedure based on the measurement of a third-order acoustic nonlinear parameter is presented to assess the residual fatigue life of a metallic component without the need of a baseline. The analytical evaluation of how the cubic nonlinear-parameter evolves during crack propagation is presented by combining the Paris law to the Nazarov-Sutin crack equation. Unlike other developed models, the proposed model assumes a crack surface topology with variable geometrical parameters. Measurements of the cubic nonlinearity parameter on AA2024-T351 specimens demonstrated high sensitivity to crack propagation and excellent agreement with the predicted theoretical behavior. The advantages of using the cubic nonlinearity parameter for fatigue cracks on metals are discussed by comparing the relevant results of a quadratic nonlinear parameter. Then the methodology to estimate crack size and residual fatigue life without the need of a baseline is presented, and advantages and limitations are discussed.  相似文献   

19.
A method of describing oscillations in resonators on the basis of evolution equations is proposed. The latter are obtained by simplifying the functional equations under the assumption that the distortions of travelling waves within the resonator length are small, that the Mach number for the moving boundary oscillations is small, and that the frequency is close to one of the natural frequencies of the resonator. The problems of nonstationary oscillations of a layer with a moving boundary are solved. The law that should govern the wall oscillations to provide the development of steady-state linear resonance oscillations is determined. The shape of the resonance curve formed in the presence of a boundary nonlinearity is calculated. The method of matching of asymptotics is applied to the singularly perturbed problem with small dissipation. It is shown that a boundary nonlinearity leads to a distortion of the temporal profile of the standing wave and to the generation of higher harmonics in the process of the development of steady-state oscillations. In contrast to the classical linear problems where the resonance occurs at the coincidence of the external force frequency with one of the natural frequencies, in the case under study the resonance behavior is observed in frequency bands, which are wider the higher the amplitude of the boundary oscillations is.  相似文献   

20.
We consider an isolated dynamical saturating system for processing a noisy sinusoidal signal, and evaluate its performance with the measure of the signal-to-noise ratio. The considered system is linear for small inputs, but exhibits saturation in its response for large inputs. This nonlinearity displays the nonlinear phenomenon of stochastic resonance for a large biased sinusoid in appropriate system parameter regions. Without the stochastic resonance phenomenon, this dynamical saturating system can achieve a signal-to-noise ratio gain exceeding unity for a noisy unbiased sinusoid. These numerical results manifest the nonlinearities and the signal-processing ability of this system acting as a stochastic resonator or a signal processor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号