首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper the results of a theoretical and experimental investigation of synchronized passive Q-switching of two Nd:YVO4-based solid-state lasers operating at two different wavelengths, is described. A V:YAG saturable absorbing material was used as a passive Q-switch performing the synchronization of the two laser fields. This material provides Q-switching operation at both 1064 and 1342 nm wavelengths simultaneously, saturating the same energy level. By adjusting the pump power of both lasers, it was possible to optimize the overlap of the two pulse trains and to switch between different states of synchronization. A theoretical model based on rate equations, which has been developed in order to investigate optical performance of the laser system, is in a good agreement with the experimental results. The principle of synchronized Q-switching can lead to new, pulsed all-solid-state light sources at new wavelengths based on sum-frequency mixing processes.  相似文献   

3.
The continuous-wave (cw) and passive Q-switching operation of a diode-end-pumped gadolinium gallium garnet doped with neodymium (Nd:GGG) laser at 1062 nm was realized. A maximum cw output power of 6.9 W was obtained. The corresponding optical conversion efficiency was 50.9%, and the slope efficiency was determined to be 51.4%. By using Cr4+:YAG crystals as saturable absorbers, Q-switching pulse with average output power of 1.28 W, pulse width of 4 ns and repetition rate of 6.2 kHz were obtained. The single-pulse energy and peak power were estimated to be 206 μJ and 51.6 kW, respectively. The conversion efficiency of the output power from cw to Q-switching operation was as high as 84.7%.  相似文献   

4.
J. An  Sh. Zhao  G. Li  K. Yang  D. Li  J. Wang  M. Li 《Laser Physics》2008,18(11):1312-1315
By using a piece of codoped Nd3+:Cr4+:YAG crystal as a saturable absorber, a laser-diode pumped passively Q-switched Nd:YVO4/YVO4 laser has been realized. The maximum laser output power of 2.452 W has been obtained at the incident pump power of 8.9 W for an 8.8% transmission of the output coupler at 1064 nm, corresponding to a slope efficiency of 30%. The other output laser characteristics of the laser have also been investigated. The laser with a Nd3+:Cr4+:YAG saturable absorber has a lower threshold pump power and a higher slope efficiency compared to that with a similar small-signal transmission of a Cr4+:YAG saturable absorber.  相似文献   

5.
This work presents experimental results concerning a passively Q-switching Nd:LuVO4 laser with a Cr4+:YAG saturable absorber operated in a three-element cavity. When the pump power exceeded 5.47 W, the system transfers stable pulse train into spatial-temporal instability. Furthermore, the chaotic pulse train accompanied the generation of a satellite pulse. The experimental results reveal that the mechanisms of instability and generation of the satellite pulse are governed by the multitransverse mode competition.  相似文献   

6.
We demonstrate a high-power nonlinear mirror (NLM) mode-locked Nd:YVO4 laser with a periodically poled KTP (PPKTP). With a 10-mm-long PPKTP crystal, 5.6 W of average power with 20-ps of pulse duration was generated at 18-W of pump power. Compared with conventional type-II KTP crystal with the same length, the stability against the Q-switched mode-locking (QML) is significantly increased with PPKTP in NLM laser; and the pulse duration was also considerably reduced. Received: 21 July 2000 / Revised version: 30 August 2000 / Published online: 10 January 2001  相似文献   

7.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

8.
9.
By simultaneously using both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber in the cavity, for the first time, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The pulse duration is obviously compressed in contrast to the actively acoustic-optic Q-switched laser. By considering the Gaussian transversal distribution of the intracavity photon density and the longitudinal distribution of the photon density along the cavity axis as well as the influence of turnoff time of the acoustic-optic (AO) Q-switch, we provide the coupled rate equations for a diode-pumped doubly Q-switched Nd:GdVO4 laser with both an acoustic-optic (AO) modulator and a Cr4+:YAG saturable absorber. These coupled rate equations are solved numerically, and the dependence of pulse width, pulse energy and peak power on the incident pump power at different pulse repetition rates is obtained. The numerical solutions of equations agree well with the experimental results.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

10.
We report on a diode end-pumped passively Q-switched Nd:YAG ceramic laser. By using a Cr4+:YAG single crystal with an 80% initial transmission as the saturable absorber, stable Q-switched pulses with a 126-μJ pulse energy, a 12-ns pulse width, and an 8.4-kHz pulse repetition rate have been obtained. The Q-switching performance of the laser under different saturable absorption strengths and output couplings was experimentally investigated.  相似文献   

11.
An intracavity optical parametric oscillator (IOPO) based on bulk KTP crystal was constructed with a Nd:YAG slab as an active medium pumped by a 300-W diode array and Cr:YAG as a passive Q-switch. A signal pulse of 1.9-mJ energy at 1572-nm wavelength was demonstrated. In the cavity, optimized with respect to single-pulse energy, a five-fold shortening of signal-pulse duration with respect to 1064-nm pump radiation was observed. A twice as large level of signal peak power of 650 kW, compared to the pump laser in the same cavity without the IOPO, was achieved. A conversion efficiency of 44% with respect to the 1064-nm pump beam and 3.8% with respect to diode pump energy was demonstrated. Received: 15 October 2002 / Revised version: 19 February 2003 / Published online: 16 April 2003 RID="*" ID="*"Corresponding author. Fax: +48-22/666-8950, E-mail: wzendzian@wat.edu.pl  相似文献   

12.
We demonstrate phase conjugation and dynamic holography by degenerate four-wave mixing in a continuous-wave diode-pumped Nd:YVO4 laser for the first time. A phase-conjugate reflectivity of 1.4% is obtained with a 12 W diode power. The experimental results and the optimizing parameters, such as the cavity mirror reflectivities, are compared with results from a steady-state theoretical analysis. Received: 6 April 1999 / Published online: 24 June 1999  相似文献   

13.
A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4+:YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210 Μj and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4+:YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 Mw was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4+ :YAG.  相似文献   

14.
Passive mode-locking of a cw lamp-pumped Nd:YAG laser using nonlinear polarization switching in a type-II SHG crystal is reported. Light pulses with more than 5 W of average power and pulse duration shorter than 25 ps have been obtained at 1064 nm. Received: 29 January 1999 / Revised version: 24 March 1999 / Published online: 1 July 1999  相似文献   

15.
We have demonstrated passively Q-switched mode-locked all-solid-state Nd:YLF laser with an uncoated GaAs wafer as saturable absorber and output mirror simultaneously. Q-switched mode-locking pulses laser with about 100% modulation depth were obtained. The average output power is 890 mW at the incident pump power of 5.76 W, corresponding to an optical slop efficiency of 20%. The temporal duration of mode-locked pulses was about 21 ps. At the Q-switched repetition rate of 30 kHz, the energy and peak power of a single pulse near the maximum of the Q-switched envelope was estimated to be about 1.6 μJ and 76 kW.  相似文献   

16.
The intracavity photon density is assumed to be of Gaussian spatial distributions and its longitudinal variation is also considered in the rate equations for a laser diode(LD)end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber.These space-dependent rate equations are solved numerically.The dependences of pulse width,pulse repetition rate,single-pulse energy,and peak power on incident pump power are obtained.In the experiment,the LD end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber is realized and the experimental results are consistent with the numerical solutions.  相似文献   

17.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

18.
We demonstrate high-efficiency diode-end-pumped multi-wavelength Nd:YAG lasers for continuous-wave and Q-switched operation. For the continuous-wave case, the Nd:YAG laser oscillates at 1.06 and 1.3 μm simultaneously; the maximum output power of 2.0 W (M2 = 1.3) and 3.6 W (M2 = 1.8) have been achieved at the incident pump power of 20.3 W, with the respective average slope efficiencies of 12.0% and 21.4%, for the lines of 1.06 and 1.3 μm, respectively. For the Q-switched operation, we achieve the average output power of 1.3 W (M2 = 2.7) at 1.06 μm and 2.0 W (M2 = 3.0) at 1.3 μm with the corresponding peak power of 10.2 and 4.2 kW under an incident pump power of 20.3 W.  相似文献   

19.
 An intracavity frequency-doubled 10%Nd : LaSc3(BO3)4 (Nd : LSB) laser was investigated in different resonator configurations and in different operation modes under continuous wave (cw) and quasi-cw laser-diode pumping. With a Cr4+ : YAG passive modulator and a KTP crystal the second-harmonic output power at 531 nm amounted to 190 mW in Q-switched TEM00 mode at 750 mW of pump power. In a sandwich resonator, when all the optical elements were in direct contact with each other, 0.8 W of green output power was obtained in cw mode under 2.7 W of pump power with a slope efficiency of 44%. In the same setup under fiber-coupled diode-laser array pumping (5.6 W of incident power), 1.2 W of green output power was achieved in cw mode and 1.4 W in quasi-cw mode. Received: 30 April 1996/Revised version: 1 July 1996  相似文献   

20.
J. Liang  S. Zhao  Z. Zhuo  T. Li  J. Zhao  M. Li  J. An  W. Wang  G. Du 《Laser Physics》2009,19(3):381-383
In the experiment, we have demonstrated the performance of a laser-diode, end-pumped, doubly Q-switched YVO4/Nd:YVO4 laser with both a BBO electric-optic (EO) Q-switch and Cr4+:YAG saturable absorber. At a maximum incident pump power of 15 W and an EO Q-switch repetition rate of 8 kHz, the stable laser pulses with the pulse duration 5.28 ns, the single pulse energy 0.14 mJ, and the pulse peak power 26 kW are obtained. The experimental results show that the double Q-switched laser with EO and Cr4+:YAG can generate the shorter pulse and the higher peak power in comparison to singly Q-switched laser with EO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号