首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optical fibers are key components in telecommunication technologies. Apart from optical specifications, optical fibers are expected to keep most of their physical properties for 10–20 years in current operating conditions. The reliability and the expected lifetime of optical links are closely related to action of the chemical environment on the silica network. However, the coating also contributes largely to the mechanical properties of the fibers.The aim of this work was to study the strength and the mechanical behavior of the silica optical fibers in an acid environment and with a permanent deformation. A container with ammonium bifluoride acid salt was plunged into hot water at different temperatures (55 and 75 °C). This emitted acid vapors which attacked the optical fibers for a period of 1–18 days. An aging study was performed on silica optical fibers with standard polyacrylate coating and with hermetic carbon coating. A dynamic two-point bending bench at different faceplate velocities (100, 200, 400 and 800 μm/s) was used. For comparison, the same dynamic measurements were also carried out on non-aged fibers.After acid vapor condensation, salt crystal deposits on the fibers were displayed using an electron scanning microscope. These crystals became visible to the naked eye from the seventh day.  相似文献   

2.
Design of an optical fiber sensor for linear thermal expansion measurement   总被引:1,自引:0,他引:1  
Design and operation of an optical fiber device for temperature sensing and thermal expansion measurement are reported. The modulated intensity has been measured by using a pair of 450 μm core fiber, one acting as the source and the other one as receiving fiber. In this design, the light intensity modulation is based on the relative motion of the optical fibers and a reflective coated lens. By using displacement calibration data for this sensor, the linear thermal expansion of the aluminum rod is determined. This sensor shows an average sensitivity of about 11.3 mV/°C for temperature detection and 7 μm/°C for thermal expansion detection. Device resolution for a linear expansion measurement is about 3 μm for a dynamic range of 600 μm corresponding to a temperature change of 100°C. The measured linear expansion results are checked against the expected theoretical ones and an agreement within ±2 μm is noticed. The operation of this sensor was also compared with other types and some advantages are observed, which verify the capability of this design for such precise measurements.  相似文献   

3.
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200–600 °C temperature range, its cubic phase of 2–3 nm size, prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 °C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction, transmission electron microscopy, and UV–visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 °C annealed samples, under ultraviolet light excitation.  相似文献   

4.
A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (−10 to 100 °C) and high temperature (100–800 °C) can be measured by the sensor. When high temperature (100–800 °C) is measured, the LPG is used as a high temperture sensor head and FBG1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG1 (or FBG2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG1 and FBG2 are used as sensor heads and LPG is used as a shared interrogation element. FBG3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.  相似文献   

5.
Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 °C) and then treated at 450 °C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 °C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 °C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 °C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25–40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.  相似文献   

6.
A new technique for generating a continuous range of true time delay values is introduced. Heating optical fiber in order to change the effective index of the guided mode produces time delays. A 45-m section of single-mode silica fiber is demonstrated to produce a continuous range of time delay values from 0 to 211 ps over a temperature tuning range of 50°C (30–80°C). A thermal time delay factor is introduced and found to be 0.096 ps/m°C for Corning LEAF fiber. A 7.66-m section of multimode Lucina polymer fiber is demonstrated to produce a range of time delay values from 0 to 32 ps over a temperature tuning range of 30°C (30–60°C). The thermal time delay factor for this fiber is −0.1427 ps/m°C.  相似文献   

7.
Fiber grating sensors for high-temperature measurement   总被引:1,自引:0,他引:1  
Two fiber grating sensors for high-temperature measurements are proposed and experimentally demonstrated. The interrogation technologies of the sensor systems are all simple, low cost but effective. In the first sensor system, the sensor head is comprised of one fiber Bragg grating (FBG) and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured based on the wavelength-shifts of the FBG induced by the strain. In the second sensor system, a long-period fiber grating (LPG) is used as the high-temperature sensor head. The LPG is very-high-temperature stable CO2-laser-induced grating and has a linear function of wavelength–temperature in the range of 0–800 °C. A dynamic range of 0–800 °C and a resolution of 1 °C have been obtained by either the first or the second sensor system. The experimental results agree with theoretical analyses.  相似文献   

8.
An all-fibre optical system for optical interrogation and detection of the vibrations of a silicon microresonator is reported. Metal-coated silicon microresonators are excited by intensity modulated laser light delivered through an optical fibre, while the vibration of the resonators is detected by an optical fibre interferometer. Measurements have shown that an average optical power of 10 μW is sufficient to maintain the flexural vibration of the resonator. When the resonator is used as a pressure sensor, its resonant frequency changes from 62 kHz to 130 kHz as the pressure varies from -0°6 bar to 1 bar (gauge). A silicon resonator with 700 nm aluminium coating functions as a temperature sensor, showing a frequency shift from 262 kHz to 251 kHz when the temperature changes from 25 °C to 80 °C.  相似文献   

9.
A polymer waveguide with integrated reflector mirrors is presented for an inter-chip link system. The cost-effective and repeatable technology for the integration of a polymer multimode waveguide and out-of-plane 45° reflector mirrors was developed for optical coupling between the light-sources and the light-detectors. This method enabled us to fabricate the waveguides and 45° reflector mirrors using a one-shot embossing process for inexpensive mass production. The optical inter-chip link system consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a vertical-cavity surface-emitting laser (VCSEL)/photo-detector (PD) array, and an optical waveguide composed of integrated reflector mirrors. The presented data transfer measurements of the optical inter-chip link system are shown to be successful at a data rate of 5 Gb/s.  相似文献   

10.
The thermostimulated luminescence (TSL) glow curve characteristics of ten dolomitic crystals of Salem and Namakkal districts of Tamilnadu are analysed. The natural thermoluminescence (NTL) measurements were carried out for all the samples and show two peaks at 270 °C and 335 °C. The sample irradiated with a gamma dose of 200 Gy shows an additional peak at 180 °C, when recorded with linear heating rate of 10 °Cs−1. At the same time, the NTL peak at 270 °C is shifted to 260 °C while increasing in intensity and there is no change in the peak position of 335 °C. The annealed sample also shows the same trend. The sample was annealed in air at the temperatures ranging from 200 to 950 °C, at an interval of 50 °C, for 1 h duration. Annealing treatment above 250 °C increases the sensitivity of all three TSL peaks. On the other hand, annealing at 800 °C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 700 °C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 to 104 Gy. The number of glow peaks was identified through partial heating method. Using peak shape and initial rise method the kinetic parameters (activation energy (E), frequency factor (S) and order of kinetics (b)) were evaluated. The investigations show that the trapping centers are not affected by the annealing procedure. The emission spectra of all the samples show an emission at around 608 nm but with different intensities for each sample. With reference to earlier work, it may be assumed that the recombination site always involves Mn2+ ions.  相似文献   

11.
Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 °C, 450 °C and 500 °C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.49 × 10−12 (esu) of the studied films was found for the 5% doped sample at 450 °C.  相似文献   

12.
A novel fiber Bragg grating high-temperature sensor   总被引:3,自引:0,他引:3  
Yage  Shaolin Xue  Qinyu Yang  Shiqing Xiang  Hong He  Rude Zhu 《Optik》2008,119(11):535-539
A novel fiber Bragg grating (FBG) sensor for the measurement of high temperature is proposed and experimentally demonstrated. The interrogation system of the sensor system is simple, low cost but effective. The sensor head is comprised of one FBG and two metal rods. The lengths of the rods are different from each other. The coefficients of thermal expansion of the rods are also different from each other. The FBG will be strained by the sensor head when the temperature to be measured changes. The temperature is measured basis of the wavelength shifts of the FBG induced by strain. A dynamic range of 0–800 °C and a resolution of 1 °C have been obtained by the sensor system. The experiment results agree with theoretical analyses.  相似文献   

13.
A polyurethane elastomer was synthesized starting from 4,4′ diphenylmethane diisocyanate and poly(ethyleneadipate)diol. Butylene glycol was used as chain extender. Surface properties after photo-degradation of the elastomer under the action of the radiation with λ > 300 nm was monitored by FT-IR spectroscopy and contact angle measurements. The quality of polymer surface was observed under optical microscope. The formation of photo-Fries rearrangement and Norrish II reaction products during irradiation was associated with the gloss loss (from 100% for non-irradiated sample to 27% after 200 h irradiation time) and modification of wettability. There were also found significant modifications with irradiation time of both the glass transition temperature (Tg decreases from 64 °C for non-irradiated sample to 53 °C after 200 h irradiation) and the swelling coefficient (an increase from 1.2% up to 2.5% is observed after 200 h irradiation).  相似文献   

14.
Wetting phenomena of water droplets on solid are of crucial concern in our daily life as well as in engineering and science. The present paper describes the room temperature synthesis of superhydrophobic silica films on glass substrates using trimethylethoxysilane (TMES) as a co-precursor. The coating sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:38.6:8.68, respectively, with 2 M NH4OH throughout the experiments and the TMES/TEOS molar ratio (M) was varied from 0 to 1.1. It was found that with an increase in M value, the hydrophobicity of the films increased, however the optical transmission decreased from 88% to 82% in the visible range. The hydrophobic silica films retained their hydrophobicity up to a temperature of 275 °C and above this temperature the films became superhydrophilic. The hydrophobic silica films were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FT-IR) spectroscopy, percentage of optical transmission, humidity test and static and dynamic contact angle measurements.  相似文献   

15.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells.  相似文献   

16.
A comparative and simultaneous study of TSL and TSC above room temperature (20–400°C) has been performed on “as-grown” and “hydrogen-swept” synthetic quartz crystals. Following X- irradiations, TSL spectra (heating RATE = 1°C/s) feature a number of peaks: at 75°C an intense structure is observed (the well-known “100°C” peak of quartz); the analysis of this peak obtained by numerical methods has shown that it follows monomolecular kinetics, giving a value of 0.83 eV for the trap depth. Additional peaks are observed at 110°C and 160°C, followed by weaker and less resolved emissions above 200°C. TSC peaks at 80°C, 120°C and 160°C, particularly evident in as-grown samples when measured with the electric field applied along the x-axis, can be associated to the corresponding TSL peaks. However, spectra performed with the electric field applied along the z-axis evidence different features. In as-grown samples a strong and broad peak at approximately 132°C is observed, while hydrogen-swept samples are characterized by two peaks at 180°C and 275°C. Such an anisotropic character, and the fact that no TSL structures are observed in the same temperature range, support the hyporthesis of an ionic nature for the latter peaks. TSC “pre-dose” measurements of the 75°C peak show that no current enhancement is observed upon irradiational and heating treatment: this result is in accordance with previous radioluminescence and thermally stimulated exoelectron emission experiments and supports the proposed model of the dynamics of this effect.  相似文献   

17.
Deprotection of oximes to the corresponding carbonyl compounds in silica sulfuric acid/surfactant/paraformaldehyde system can be carried out in excellent yields at 50 °C in water under ultrasound irradiation.  相似文献   

18.
Bio-glass films were deposited by radio-frequency magnetron sputtering technique onto medical grade Ti6Al7Nb alloy substrates from prepared silica based bio-glass target. A low deposition temperature was used (150 °C) and three different working pressures, followed by annealing in air at 550 and 750 °C. A quasi-stoichiometric target to substrate atomic transfer was found for Si, Ca and P, along with strong enrichment in Na and depletion in K and Mg, as evidenced by the energy dispersive microanalysis. The best results, taking into account stoichiometry and surface roughness, were obtained for the BG layers deposited at 0.3 Pa argon working pressure. The infrared spectroscopy of the as-sputtered and of the annealed films evidenced the characteristic molecular vibrations of silicate, phosphate and carbonate functional groups. The as-deposited films are amorphous and became partly crystalline after annealing at 750 °C, as evidenced by X-ray diffraction. The pull-out measurements, performed with a certified pull-test machine, gave very strong film–substrate adhesion strength values. For the non-crystalline layers, the pull-out strength is higher than 85 MPa, and decreases after annealing at 750 °C to 72.9 ± 7.1 MPa. The main objective of this work was to establish the influence of the working pressure upon the composition and morphology of the as-deposited films, and of the annealing temperature upon structure and film–substrate adhesion.  相似文献   

19.
A pulsed laser emitting UV radiations generated by the third harmonic of Nd:YAG was applied for the synthesis of nano-structured ZnO2 and ZnO. For the synthesis of nanoparticles of ZnO2, a high-purity metallic plate of Zn target was fixed at the bottom of a glass cell, in the presence of deionized water mixed with oxidizing agent H2O2, under repeated laser irradiation. The optical properties, size and the morphology of the synthesized ZnO2 and ZnO by laser ablation was influenced strongly by post-annealing conditions which is not previously reported. By annealing ZnO2 at 200 °C for 8 h, the product (ZnO2) synthesized primarily was converted completely to ZnO. By variation of the annealing temperatures from 200 to 600 °C, the grain size of ZnO changes from 5 to 19 nm with a change in lattice parameters, the band gap and some other optical properties of nano-ZnO.  相似文献   

20.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号