首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The equilibrium of a liquid heated from below is stable only for small values of the vertical temperature gradient. With increase of the temperature gradient a critical equilibrium situation occurs, as a result of which convection develops. If the liquid fills a closed cavity, then there is a discrete sequence of critical temperature gradients (Rayleigh numbers) for which the equilibrium loses stability with respect to small characteristic disturbances. This sequence of critical gradients and motions may be found from the solution of the linear problem of equilibrium stability relative to small disturbances. If the temperature gradient exceeds the lower critical value, then (for steady-state heating conditions) there is established in the liquid a steady convective motion of a definite amplitude which depends on the magnitude of the temperature gradient. Naturally, the amplitude of the steady convective motion cannot be determined from linear stability theory; to find this amplitude we must solve the problem of convection with heating from below in the nonlinear formulation. A nonlinear study of the steady motion of a liquid in a closed cavity with heating from below was made in [1]. In that study it was shown that for Rayleigh numbers R which are less than the lower critical value Rc steady-state motions of the liquid are not possible. With R>Rc a steady convection arises, whose amplitude near the threshold is small and proportional to (R–Rc)1/2 (the so-called soft instability)-this is in complete agreement with the results of the phenom-enological theory of Landau [2, 3].Primarily, various versions of the method of expansion in powers of the amplitude [4–8] have been used, and, consequently, the results obtained in those studies are valid only for values of R which are close to Rc, i. e., near the convection threshold.It is apparent that the study of developed convective motion far from the threshold can be carried out only numerically, with the use of digital computers. In [9, 10] the numerical methods have been successfully used for the study of developed convection in an infinite plane horizontal liquid layer.The present paper undertakes the numerical study of plane convective motions of a liquid in a closed cavity of square section. The complete nonlinear system of convection equations is solved by the method of finite differences on a digital computer for various values of the Rayleigh number, the maximal value exceeding by a factor of 40 the minimal critical value Rc. The numerical solution permits following the development of the steady motion which arises with R>Rc in the course of increase of the Rayleigh number and permits study of the oscillatory motions which occur at some value of the parameter R. The heat transfer through the cavity is studied. The corresponding linear problem on equilibrium stability is solved approximately by the Galerkin method.  相似文献   

2.
The approximate formula K a–2R(N–1), where a is a constant near 9 and R and N are the Rayleigh and Nusselt numbers, was proposed in [1] for the dimensionless kinetic energy K of convection in a horizontal layer of liquid. It is shown in the present paper that this expression is exact in linear and weakly nonlinear convection theory when the velocity and temperature fields are represented analytically [2–4]. The valuea is found to be 8.76 when the upper and lower boundaries of the layer are solid walls. The results are given of numerical calculations of the kinetic energy of the convection and the heat transfer in a wide range of Rayleigh numbers (up to 44 000) and Prandtl numbers (0.025 P 15). Analysis of the results shows that a is in fact a weak function of both R and P. If this is also the case at large R, it indicates a certain breaking of scaling of the mean convection characteristics at sufficiently large values of the Rayleigh number. It also indicates why laboratory experiments give values of n in the dependence N Rn which are generally slightly less than the theoretical value n = 1/3.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 11–18, September–October, 1981.We should like to thank N. F. Vel'tishchev for providing first data of the numerical experiments of [13–15].  相似文献   

3.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

4.
Grigin  A. P. 《Fluid Dynamics》1984,19(1):129-132
A study is made of the natural convective diffusion in a nonconcentric spherical layer formed by a ball of radius R1 in a sphere of radius R2. The centers of the ball and sphere are separated by a distance d R1. The spherical layer is filled with a binary electrolyte, and the outer surface of the ball and the inner surface of the sphere serve as the anode and cathode, respectively, of an oxidation—reduction reaction. It is assumed that the reaction proceeds in accordance with diffusion kinetics, i.e., the current in the circuit limits the rate at which the reacting substances reach the electrodes [1]. If a current passes in the system, a concentration gradient develops in the reacting substances, and in a gravitational field a convective motion of the fluid is generated, which changes the rate at which the reacting substances arrive at the electrodes. For a binary eletrolyte in the leading approximation in the small parameter rD(R2 – r1)–1, where rD is the Debye radius, the migration current can be eliminated, and one need consider only the diffusion and convective fluxes of the ions [2]. If the centers of the ball and the sphere coincide, the integrated diffusion flux at small Grashof numbers is not changed, and there is merely a local redistribution.[3–5]. At small Grashof numbers, a strong dependence of the integrated diffusion flux on the eccentricity of the spherical layer must be expected. In the present paper, the hydrodynamic velocity field of the fluid, and also the change in the integrated diffusion flux due to the convective transport of the ions are found in the linear approximation in the small parameter = d/R1.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 151–154, January–February, 1984.  相似文献   

5.
The gas-dynamical structure of jets of a low-density diatomic gas beyond a sonic nozzle at large pressure drops under conditions of a transition from continuous medium processes to rarefied gas processes is examined on the basis of experimental data obtained in low-density gas-dynamical tubes using electron-beam diagnostics and the Pitot tube method. Isomorphism is shown in the density distribution and total pressure in all cross sections of the jet with respect to pressures at a constant value of the complex RL=R*/N1/2(R* is the Reynolds number in the critical cross section of the nozzle, and N is the ratio of the Pitot pressure and the pressure in the discharge chamber). It is shown on the basis of a comparison of local Reynolds numbers for all zones of the jet that this is an analog complex. The experimental data on the variation in the jet structure are presented as a function of the number RL in the range of 5–600. For RL> 100 the flow in the jet can be considered as continuous; for RL< 5–10 the flow corresponds to a scattering process; the range of 5–10< RL< 100 corresponds to a transitional state. Ranges of isomorphism of the jet with respect to R* and N are indicated. Based on the results of the measurements, it is shown that the flow behind a Mach disk for RL> 200 remains subsonic on the axis to a distance of several lengths of the primary cycle. A transition to supersonic velocity on the jet axis can occur with a decrease in the numbers RL owing to ejection acceleration by the supersonic ring-shaped compressed layer.This word is apparently interchangeable with self-similarity-Translator.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 64–73, March–April, 1973.  相似文献   

6.
The steady-state convective motions of a viscous fluid occupying a spherical layer R1 r R2, R2/R1=1.2 are studied. The non-deformable boundaries of the layer are assumed to be free of shear stresses. At the outer boundary the constant temperature and at the inner boundary the constant heat flux are given. The system of equations in the Boussinesq approximation is solved by the Galerkin method with time stabilization on the assumption of axial and equatorial symmetry. It is shown that at the point Ra=Rac the state of mechanical equilibrium loses stability and steady symmetrical supercritical bifurcation is observed. The modes most unstable in the linear sense determine the form of convection when Ra > Rac and the supercriticality is not too great. At Rayleigh numbers Rac < Ra < 200Rac there exists a set of steady-state solutions with different spatial structures. The realization of solutions of a particular type depends on the supercriticality and the initial conditions. The evolution of the solutions with variation of the Rayleigh number is investigated. The changes in the spatial kinetic energy spectra and the integral heat fluxes upon transition from one branch of the solutions to another and with variation of the supercriticality are analyzed. As the supercriticality increases, despite the excitation of more and more new small-scale modes, the large-scale motions begin to make an ever greater contribution to the total energy. The results obtained can be used for constructing hydrodynamic models of the global motions in the atmospheres of giant planets, the convective envelopes of stars, and in the depths of the earth's mantle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 17–24, November–December, 1989.  相似文献   

7.
The character of stability loss of the circular Couette flow, when the Reynolds number R passes through the critical value R0, is investigated within a broad range of variation of the wave numbers. The Lyapunov-Schmidt method is used [1, 2]; the boundary-value problems for ordinary differential equations arising in the case of its realization are solved numerically on a computer. It is shown that the branching character substantially depends on the wave number . For all a, excluding a certain interval (1, 2), the usual postcritical branching takes place: at a small supercriticality the circular flow loses stability and is softly excited into a secondary stationary flow — stable Taylor vortices. For wave numbers from the interval (1,2) a hard excitation of Taylor vortices takes place: at a small subcriticality R=R02 the secondary mode is unstable and merges with the Couette flow for 0; however, for a small supercriticality in the neighborhood of a circular flow there exist no stationary modes which are different.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–135, May–June, 1976.  相似文献   

8.
The flow of a liquid (or gas) with aerosol particles suspended in it in channels of different configurations is of great interest in the solution of many practical problems. The aim of the present paper is to develop a method for calculating the hydrodynamics and the heat and concentration transfer of aerosol particles for steady flow of an incompressible fluid in toroidal channels of circular section. The paper uses an implicit difference scheme with different approximations of the convective terms on a nonuniform grid (directed differences, central differences, and the monotonic approximation of Samarskii), which makes it possible to reduce the solution of the system of the original nonlinear partial differential equations to the successive solution of one-dimensional systems [1]. The method proposed by Polezhaev and Gryaznov [2] is used to calculate the boundary conditions for the vorticity. The hydrodynamic equations are solved by means of the difference scheme developed by Khristov [3], and the heat and concentration transfer equations are solved by the difference scheme proposed by Val'tsiferov and Polezhaev [4]. The obtained results make possible a detailed analysis of the dependence of the basic integrated (particle capture coefficient) and local characteristics on the values of the relevant dimensionless numbers, namely, the Dini, Prandtl, and Schmidt numbers, the parameter R/Rk, which characterizes the curvature of the channel, and the dimensionless parameter Wf = fRG(TO–TW)/(pM), which characterizes the rate of thermophoresis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 159–164, March–April, 1984.  相似文献   

9.
This paper presents the technique for and results from numerical calculations of the hypersonic laminar boundary layer on blunted cones with account for the vorticity of the external flow caused by the curved bow shock wave. It is assumed that the air in the boundary layer is in the equilibrium dissociated state, but the Prandtl number is assumed constant, =0.72. The calculations were made in the range of velocities 3–8 km/sec, cone half-angles k=0°–20°. With account for the vortical interaction of the boundary layer with the external flow, the distribution of the thermal flux and friction will depend on the freestream Reynolds number (other conditions being the same). In the calculations the Reynolds number R, calculated from the freestream parameters and the radius of the spherical blunting, varies from 2.5·103 to 5.104. For the smaller Reynolds numbers the boundary layer thickness on the blunting becomes comparable with the shock standoff, and for R<2.5·103 it is apparent that we must reconsider the calculation scheme. With R>5·104 for cones which are not very long the vortical interaction becomes relatively unimportant. The results of the calculations are processed in accordance with the similarity criteria for hypersonic viscous gas flow past slender blunted cones [1, 2].  相似文献   

10.
The optimum rib size to enhance heat transfer had been proposed through an experimental investigation on the forced convection of a fully developed turbulent flow in an air-cooled horizontal equilateral triangular duct fabricated on its internal surfaces with uniformly spaced square ribs. Five different rib sizes (B) of 5 mm, 6 mm, 7 mm, 7.9 mm and 9 mm, respectively, were used in the present investigation, while the separation (S) between the center lines of two adjacent ribs was kept at a constant of 57 mm. The experimental triangular ducts were of the same axial length (L) of 1050 mm and the same hydraulic diameter (D) of 44 mm. Both the ducts and the ribs were fabricated with duralumin. For every experimental set-up, the entire inner wall of the duct was heated uniformly while the outer wall was thermally insulated. From the experimental results, a maximum average Nusselt number of the triangular duct was observed at the rib size of 7.9 mm (i.e. relative rib size ). Considering the pressure drop along the triangular duct, it was found to increase almost linearly with the rib size. Non-dimensional expressions had been developed for the determination of the average Nusselt number and the average friction factor of the equilateral triangular ducts with ribbed internal surfaces. The developed equations were valid for a wide range of Reynolds numbers of 4,000 < Re D < 23,000 and relative rib sizes of under steady-state condition. A Inner surface area of the triangular duct [m2] - A C Cross-sectional area of the triangular duct [m2] - B Side length of the square rib [mm] - C P Specific heat at constant pressure [kJ·kg–1·K–1] - C 1, C 2, C 3 Constant coefficients in Equations (10), (12) and (13), respectively - D Hydraulic diameter of the triangular duct [mm] - Electric power supplied to heat the triangular duct [W] - f Average friction factor - F View factor for thermal radiation from the duct ends to its surroundings - h Average convection heat transfer coefficient at the air/duct interface [W·m–2 ·K–1] - k Thermal conductivity of the air [W·m–1 ·K–1] - L Axial length of the triangular duct [mm] - Mass flow rate [kg·s–1] - n 1, n 2, n 3 Power indices in Equations (10), (12) and (13), respectively - Nu D Average Nusselt number based on hydraulic diameter - P Fluid pressure [Pa] - Pr Prandtl number of the airflow - c Steady-state forced convection from the triangular duct to the airflow [W] - l Heat loss from external surfaces of the triangular duct assembly to the surroundings [W] - r Radiation heat loss from both ends of the triangular duct to the surroundings [W] - Re D Reynolds number of the airflow based on hydraulic diameter - S Uniform separation between the centre lines of two consecutive ribs [mm] - T Fluid temperature [K] - T a Mean temperature of the airflow [K] - T ai Inlet mean temperature of the airflow [K] - T ao Outlet mean temperature of the airflow [K] - T s Mean surface temperature of the triangular duct [K] - T Ambient temperature [K] - U Mean air velocity in the triangular duct [m·s–1] - r Mean surface-emissivity with respect to thermal radiation - Dynamic viscosity of the fluid [kg·m–1·s–1] - Kinematic viscosity of the airflow [m2·s–1] - Density of the airflow [kg·m–3] - Stefan-Boltzmann constant [W·m–2·K–4]  相似文献   

11.
The article describes a method for calculating the flow of heat through a wavy boundary separating a layer of liquid from a layer of gas, under the assumption that the viscosity and heat-transfer coefficients are constant, and that a constant temperature of the fixed wall and a constant temperature of the gas flow are given. A study is made of the equations of motion and thermal conductivity (without taking the dissipation energy into account) in the approximations of the theory of the boundary layer; the left-hand sides of these equations are replaced by their averaged values over the layer. These equations, after linearization, are used to determine the velocity and temperature distributions. The qualitative aspect of heat transfer in a thin layer of viscous liquid, under regular-wavy flow conditions, is examined. Particular attention is paid to the effect of the surface tension coefficient on the flow of heat through the interface.Notation x, y coordinates of a liquid particle - t time - v and u coordinates of the velocity vector of the liquid - p pressure in the liquid - cv, , T,, andv heat capacity, thermal conductivity coefficient, temperature, density, and viscosity of the liquid, respectively - g acceleration due to gravity - surface-tension coefficient - c phase velocity of the waves at the interface - Tw wall temperature - h0 thickness of the liquid layer - u0 velocity of the liquid over the layer Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 147–151, July–August, 1970.  相似文献   

12.
The variation of the specific thrust RY on the angle of inclination of the wall is analyzed within the framework of the ideal gas model using the results of specific impulse and flow rate calculations for conical convergent nozzles. It is shown that in unchoked regimes nozzles with different have almost the same values of RY for both subcritical and supercritical pressure ratios c. On the interval C < 6 typical of convergent nozzles conical convergent nozzles with =30–90° have almost the same value of the specific thrust, maximal relative to the RY of nozzles with < 30°. In the presence of viscosity forces local boundary layer separation may occur in the neighborhood of the entrance section of the convergent nozzle. A method of constructing a separationless convergent nozzle contour with enhanced thrust is developed on the basis of a boundary layer separation criterion. The separationless contour is determined for given values of the flow rate, specific heat ratio, Reynolds number, wall temperature and initial boundary layer displacement thickness.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 158–164, January–February, 1990.  相似文献   

13.
A numerical study of the onset of longitudinal transition between turbulent and laminar regimes during the evaporation of a water film is presented. These water film streams along a horizontal elliptical tube under the simultaneous effects of gravity, pressure gradients, caused by the vapor flow and curvature, and viscous forces. At the interface of water vapor, the shear stress is supposed to be negligible. Outside the boundary layer, the vapor phase velocity is obtained from potential flow. In the analysis Von Karmans turbulence model is used and the inertia and convection terms are retained. Transfers equations are discretised by using the implicit Keller method. The effects of an initial liquid flow rate per unit of length, Froude number, temperature difference between the wall and the liquid–vapor interface and ellipticity on the transition position have been evaluated. The transition criterion has been given in term of the critical film Reynolds number (Re)C.  相似文献   

14.
The stability of the laminar helical flow of pseudoplastic liquids has been investigated with an indirect method consisting in the measurement of the rate of mass transfer at the surface of the inner rotating cylinder. The experiments have been carried out for different values of the geometric parameter = R 1/R 2 (the radius ratio) in the range of small values of the Reynolds number,Re < 200. Water solutions of CMC and MC have been used as pseudoplastic liquids obeying the power law model. The results have been correlated with the Taylor and Reynolds numbers defined with the aid of the mean viscosity value. The stability limit of the Couette flow is described by a functional dependence of the modified critical Taylor number (including geometric factor) on the flow indexn. This dependence, general for pseudoplastic liquids obeying the power law model, is close to the previous theoretical predictions and displays destabilizing influence of pseudoplasticity on the rotational motion. Beyond the initial range of the Reynolds numbers values (Re>20), the stability of the helical flow is not affected considerably by the pseudoplastic properties of liquids. In the range of the monotonic stabilization of the helical flow the stability limit is described by a general dependence of the modified Taylor number on the Reynolds number. The dependence is general for pseudoplastic as well as Newtonian liquids.Nomenclature C i concentration of reaction ions, kmol/m3 - d = R 2R 1 gap width, m - F M () Meksyn's geometric factor (Eq. (1)) - F 0 Faraday constant, C/kmol - i l density of limit current, A/m3 - k c mass transfer coefficient, m/s - n flow index - R 1,R 2 inner, outer radius of the gap, m - Re = V m ·2d·/µ m Reynolds number - Ta c = c ·d3/2·R 1 1/2 ·/µ m Taylor number - Z i number of electrons involved in electrochemical reaction - = R 1/R 2 radius ratio - µ apparent viscosity (local), Ns/m2 - µ m mean apparent viscosity value (Eq. (3)), Ns/m2 - µ i apparent viscosity value at a surface of the inner cylinder, Ns/m2 - density, kg/m3 - c angular velocity of the inner cylinder (critical value), 1/s  相似文献   

15.
A study is made of plane-parallel convective motion of a viscoplastic liquid between parallel vertical planes on which different temperatures are maintained. In contrast to [1], the yield shear stress 0 is not a constant but is assumed to be a function of the temperature; moreover, above a certain critical temperature T* the yield shear stress vanishes, so that for T > T* the liquid is purely Newtonian. The structure of the regions of quasirigid and viscoplastic flow is studied in its dependence on the Theological parameters. The velocity profiles corresponding to the different flow regimes are found, and the boundaries between the regimes and the longitudinal heat flux are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 118–123, March–April, 1980.We thank G. Z. Gershuni and A. A. Nepomnyashchii for a helpful discussion of the work.  相似文献   

16.
The equilibrium of a fluid is possible in a closed cavity in the presence of a strictly vertical temperature gradient (heating from below) [1]. There is a distinct sequence of critical Rayleigh numbers Ri at which this equilibrium loses its stability relative to low characteristic perturbations. The presence of different finite perturbations, unavoidable in an experiment, leads to the absence of a strict equilibrium when R < R1. The problem of the influence of the perturbation on the convection conditions near the critical points arises in this context [2, 3]. The case in which the cavity is heated not strictly from below is investigated in [2] and the case in which the perturbation of the equilibrium is due to the slow movement of the upper boundary of the region is investigated in [3]. In [2, 3] the perturbation has the structure of a first critical motion and thus the results of these papers coincide qualitatively. The perturbation of the temperature in the horizontal sections of the boundary, which creates a perturbation with a two-vortex structure corresponding to the second critical point R2, is examined in this paper. A similar type of perturbation is characteristic for experiments in which the thermal conductivity properties of the fluid and the cavity walls are different. The nonlinear convection conditions are investigated numerically by the net-point method.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 203–207, March–April, 1977.The author wishes to thank D. B. Lyubimova, V. I. Chernatynskii, and A. A, Nepomnyashchii for their helpful comments.  相似文献   

17.
The stability of the Couette flow of the liquid with the power law viscosity in a wide annular gap has been investigated theoretically in this work with the aid of the method of small disturbances. The Taylor number, being a criterion of the stability, has been defined using the mean apparent viscosity value in the main flow. In the whole range of the radius ratio, R i /R o and the flow index, n, considered (R i /R o 0.5, n = 0.25–1.75 ), the critical value of the Taylor number Ta c is an increasing function of the flow index, i.e., shear thinning has destabilizing influence on the rotational flow, and dilatancy exhibits an opposite tendency.In the wide ranges of the flow index, n > 0.5, and the radius ratio, R i /R o > 0.5, the wide-gap effect on the stability limit is predicted to be almost the same for non-Newtonian fluids as for Newtonian ones. The ratio on the critical Taylor numbers for non-Newtonian and Newtonian fluids: Ta c (n) and Ta c (n = 1) obey a generalized functional dependence: Ta c (n)/Ta c (n = 1) = g(n), where g(n) is a function corresponding to the solution for the narrow gap approximation.Theoretical predictions have been compared with experimental results for pseudoplastic liquids. In the range of the radius ratio R i /R o > 0.6 the theoretical stability limit is in good agreement with the experiments, however, for R i /R o < 0.6, the critical Taylor number is considerably lower than predicted by theory.  相似文献   

18.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

19.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

20.
One-dimensional problems of the flow in a boundary layer of finite thickness on the end face of a model and in a thin viscous shock layer on a sphere are solved numerically for three regimes of subsonic flow past a model with a flat blunt face exposed to subsonic jets of pure dissociated nitrogen in an induction plasmatron [1] (for stagnation pressures of (104–3·104) N/m2 and an enthalpy of 2.1·107 m2/sec2) and three regimes of hypersonic flow past spheres with parameters related by the local heat transfer simulation conditions [2, 3]. It is established that given equality of the stagnation pressures, enthalpies and velocity gradients on the outer edges of the boundary layers at the stagnation points on the sphere and the model, for a model of radius Rm=1.5·10–2 m in a subsonic jet the accuracy of reproduction of the heat transfer to the highly catalytic surface of a sphere in a uniform hypersonic flow is about 3%. For surfaces with a low level of catalytic activity the accuracy of simulation of the nonequilibrium heat transfer is determined by the deviations of the temperatures at the outer edges of the boundary layers on the body and the model. For this case the simulation conditions have the form: dUe/dx=idem, p0=idem, Te=idem. At stagnation pressuresP 02·104 N/m2 irrespective of the catalycity of the surface the heat flux at the stagnation point and the structure of the boundary layer near the axis of symmetry of models with a flat blunt face of radius Rm1.5·10–2 m exposed to subsonic nitrogen jets in a plasmatron with a discharge channel radius Rc=3·10–2 m correspond closely to the case of spheres in hypersonic flows with parameters determined by the simulation conditions [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 135–143, March–April, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号