首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. A. Ustinov 《Adsorption》2008,14(2-3):171-179
We analyze argon adsorption isotherms and isosteric heat of adsorption on graphitized and nongraphitized carbon black and silica surfaces by means of nonlocal density functional theory (NLDFT). It is shown that in the case of graphitized carbon black the behavior of the adsorbed phase is nearly identical to that in the bulk phase at a distance larger than about 3-4 molecular diameters from the surface. At a smaller distance argon forms solid-like molecular layers at a temperature at least 3.5 K above the triple point, with the interlayer distance being markedly smaller than the argon collision diameter. In the case of defected or amorphous surfaces adsorbed argon is liquid-like below its triple point. Our extension of the Tarazona NLDFT to amorphous solids (NLDFT-AS) and the Kierlik and Rosinberg version of NLDFT excellently fit argon adsorption isotherms and properly predict the isosteric heat of adsorption. We showed that the surface roughness affects the calculated heat of adsorption, which allowed us to adjust the width of the diffuse zone of the nongraphitized carbon black and the silica surface.  相似文献   

2.
The heats of adsorption of nitrogen, argon, xenon, pentane, cyclohexane and benzene on a typical microporous carbon have been measured by gas-solid chromatography. An overall comparison of the limiting heats of adsorption on active carbons and on graphitized carbon blacks shows a ratio of 1.6 between them. This is also the value of the ratio of the minima of the adsorption potentials. This result is discussed in terms of simple models for the shape of the micropores. Slot-like pores give a better agreement.  相似文献   

3.
Hydrogen adsorption isotherms were measured both at cryogenic temperatures below 1 atm and at ambient temperature at high pressures, up to 90 atm, on selected porous carbons with various pore structures. The nonlocal density functional theory (NLDFT) model was used to calculate the pore size distributions (PSDs) of the carbons, from H2 adsorption isotherms measured at 77 K, and then to predict H2 adsorption on these carbons at 87 and 298 K. An excellent agreement between the predicted and measured data was obtained. Prior to analyzing the porous carbons, the solid-fluid interaction parameters used in the NLDFT model were derived from H2 adsorption data measured at 77 K on nonporous carbon black. The results show that the NLDFT model with appropriate parameters may be a useful tool for optimizing carbon pore structures and designing adsorption systems for hydrogen storage applications.  相似文献   

4.
5.
A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV. The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R1 in the temperature range from 25 to 70 degrees C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems.  相似文献   

6.
Equilibrium adsorption of nitrogen, carbon dioxide, and argon was examined on the sodium and pyridinium forms of montmorillonite and on the hydrogen form of bentonite. The measurements were carried out at 303, 343, 373, and 400 K over pressure ranges of 0.1–90 MPa (Ar and N2) and 0.1–6 MPa (CO2). The amount of nitrogen vapor adsorbed was determined at 77 K and pressures from 0 to 0.1 MPa. The porous structure parameters of the studied samples were determined using adsorption isotherms of nitrogen, argon, and carbon dioxide vapors. At elevated temperatures and pressures >10 MPa, Ar and N2 adsorption processes on the Na-form of montmorillonite and Ar adsorption on bentonite are activated, since the amounts of the gases adsorbed and adsorption volumes increase with temperature. No activated adsorption is observed for carbon dioxide adsorption on these adsorbents. A comparison of the excess adsorption isotherms of gases on the Py-form of montmorillonite and H-form of bentonite shows that adsorption in micropores predominates for the Py-form of montmorillonite, whereas for the Na-form of bentonite and H-form of bentonite adsorption occurs mainly in meso- and macropores.  相似文献   

7.
Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.  相似文献   

8.
The adsorption behavior of Vulkan-7H carbon black graphitized at 3073 K was studied. Benzene adsorption isotherms at 293 K were measured by the static method and by gas chromatography. It was shown that Vulkan-7H carbon black may be considered as a supermicroporous adsorbent with a pore size of 1.05 nm.The sample was provided by N. N. Lezhnev.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1544–1546, September, 1993.  相似文献   

9.
In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m2/g) at 298 K and a pressure range of 1.3–93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.  相似文献   

10.
The experimental adsorption isotherms of water and nitrogen vapors on graphitized carbonaceous adsorbents with large pore size prepared from ultradispersive technical carbon black have been compared with those on the surface of non-porous graphitized carbon black. The saturation value of water vapor adsorption has been shown to be proportional to the concentration of primary adsorption centers. At low concentrations of these centers the saturation value corresponds to the formation of fractions of a dense monolayer on the surface. The maximum size of clusters of water molecules on a carbonaceous adsorbent surface has been estimated.Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 54–56, January, 1993.  相似文献   

11.
N2 adsorption isotherms of molecular sieve carbon were measured at 77 K and 303 K. The Ar adsorption isotherms of molecular sieve carbon samples were also measured at 303 K. The grand canonical Monte Carlo (GCMC) simulation technique was applied to calculate the N2 and Ar adsorption isotherms at 303 K using the ultramicropore volume determined by H2O adsorption. The comparative method of experimental and simulated isotherms of supercritical N2 and Ar at 303 K gave the width of the micropore mouth of the molecular sieve carbon, which can be applied to the ultramicropore width determination for other noncrystalline porous solids.  相似文献   

12.
Surface heterogeneity can be assessed by adsorption of different gaseous probes on solid materials. In the present study, four types of activated carbons were analyzed by classical N2 Brunauer-Emmett-Teller (BET) measurements and by low-pressure quasi-equilibrium volumetry (LPQEV) (Villieras, F.; Michot, L. J.; Bardot, F.; Cases, J. M.; Francois, M.; Rudzinski, W. Langmuir 1997, 13, 1104). Three methods of data evaluation were applied: (a) the Frenkel-Halsey-Hill method for estimation of fractal dimensions from BET data, (b) the Horwath-Kawazoe method to calculate the pore size distribution from LPQEV Ar and N2 adsorption isotherms, and (c) the derivative isotherm summation (DIS) method to describe the solid's surface heterogeneity by a concept of local derivative isotherms. Similar Ar and N2 adsorption energy distributions were obtained on all carbons, which indicates the presence of mainly nonpolar surfaces. When adsorption was described by the van der Waals equation, the ratio between the interaction energy of different energetic sites with argon and nitrogen was 0.88. This value corresponded very well with a slope obtained when Ar and N2 positions of local isotherms by the DIS method were compared. This relationship has an important impact because it enables one to constrain the modeling of local isotherms. This study, besides the surface information, showed large possibilities of the DIS method for the surface analysis not only in terms of solid heterogeneity characterization but also in terms of polarity assessment.  相似文献   

13.
In order to address open questions concerning the surface chemistry and pore structure characterization of nanoporous carbons, we performed extensive experiments by combining various experimental techniques on a series of commercially available activated carbons which exhibit diverse surface chemistry characteristics. Pore size analysis was performed on Ar (87 K), N2 (77 K) and CO2 (273 K) adsorption isotherms using state-of-the art methods based on density functional theory, including the recently developed quenched solid density functional theory (QSDFT). A detailed study of the surface chemistry was obtained by applying temperature programmed desorption coupled with mass spectrometry (TPD-MS) as well as XPS (X-Ray-Photoelectron Scattering). This information together with the pore structure information leads to a reliable interpretation of systematic water adsorption measurements obtained on these materials. Our results clearly suggest that water adsorption is indeed a sensitive tool for detecting differences in surface chemistry between chemically and physically activated active carbon materials with comparable ultramicropore structure. The occurrence of sorption hysteresis associated with the filling of micro- and narrow mesopores (in a range where nitrogen and argon isotherms are reversible) provides additional structural information, complementary to the insights from argon/nitrogen/carbon dioxide adsorption.  相似文献   

14.
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.  相似文献   

15.
The standard α(s)-data of N(2) at 87.3 K by graphitized and nongraphitized carbon black samples (GCB-I and NGCB) (cf.Figs. 3 and 4) have been determined on the basis of the high resolution adsorption isotherms of N(2) at 87.3 K, which were repeatedly measured in the pressure range of p/p(o)=5×10(-8)-0.4. The high resolution adsorption isotherms of N(2) by two kinds of activated carbon fibers (ACF-I and ACF-II) were measured from p/p(o)=10(-7) to p/p(o)=0.995 at 77.4 K and from p/p(o)=10(-7) to p/p(o)=0.4 at 87.3 K. Combination of the adsorption isotherms by ACF-I and ACF-II with the standard α(s)-data by NGCB at 77.4 K and 87.3 K make it possible to construct the high resolution α(s)-plots from very low filling (1%) to complete filling (100%). The high resolution α(s)-plots of N(2) at 77.4 K and 87.3 K were analyzed. On the basis of the analyzed result, the porous textures of ACF-I and ACF-II will be discussed.  相似文献   

16.
A comparison of Sterling FT, a graphitized carbon black used widely in ad- sorption and gas chromatography, and Carbopack C, a commercially available graphitized carbon black, was made in terms of retention parameters, heats of adsorption and their behaviour at various coating percentages.

The effects induced by hydrogen treatment at high temperature are compared, and it is shown that graphs of the heat of adsorption versus percentage of liquid phase added are very useful in understanding the difference in the surface properties of the two materials. The advantages of the two carbon blacks in practical gas chromato- graphy are discussed.  相似文献   


17.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

18.
We report results of nitrogen and argon adsorption experiments performed at 77.4 and 87.3 K on novel micro/mesoporous silica materials with morphologically different networks of mesopores embedded into microporous matrixes: SE3030 silica with worm-like cylindrical channels of mode diameter of approximately 95 angstroms, KLE silica with cage-like spheroidal pores of ca. 140 angstroms, KLE/IL silica with spheroidal pores of approximately 140 angstroms connected by cylindrical channels of approximately 26 angstroms, and, also for a comparison, on Vycor glass with a disordered network of pores of mode diameter of approximately 70 angstroms. We show that the type of hysteresis loop formed by adsorption/desorption isotherms is determined by different mechanisms of condensation and evaporation and depends upon the shape and size of pores. We demonstrate that adsorption experiments performed with different adsorptives allow for detecting and separating the effects of pore blocking/percolation and cavitation in the course of evaporation. The results confirm that cavitation-controlled evaporation occurs in ink-bottle pores with the neck size smaller than a certain critical value. In this case, the pressure of evaporation does not depend upon the neck size. In pores with larger necks, percolation-controlled evaporation occurs, as observed for nitrogen (at 77.4 K) and argon (at 87.3 K) on porous Vycor glass. We elaborate a novel hybrid nonlocal density functional theory (NLDFT) method for calculations of pore size distributions from adsorption isotherms in the entire range of micro- and mesopores. The NLDFT method, applied to the adsorption branch of the isotherm, takes into account the effect of delayed capillary condensation in pores of different geometries. The pore size data obtained by the NLDFT method for SE3030, KLE, and KLE/IL silicas agree with the data of SANS/SAXS techniques.  相似文献   

19.
Summary Adsorption of n-alkanes (n-heptane to n-decane) on a graphitized carbon black and its activation products in dry air was carried out by a gas chromatographic technique. Adsorption runs were performed at finite surface coverage, to obtain the surface area and the London component of the surface free energy of the solids from the adsorption isotherms. On the other hand, the adsorption of n-alkanes carried out at zero surface coverage gave the differential heats of adsorption. The results show that, after the activation in dry air of the graphitized carbon black used, the surface area has a linear relationship with the degree of activation, whereas the surface heterogeneity changes in a parabolic fashion.  相似文献   

20.
The Brunauer-Emmett-Teller (BET) surface area of 15 nm-thick films made of TiO2/polyelectrolyte bilayer was determined by quartz crystal microbalance (QCM) measurement of N2 and Ar adsorption isotherms at 77 K. The measurements were carried out using a home-built vacuum chamber that includes built-in 9 MHz QCM and cryostat units. As little as 1 ng of the adsorbed gas could be detected, and the BET surface area of a flat Au film (ca. 0.5 cm2) on an oscillator was determined within an experimental error of +/-5%. The titania/polymer composite film gives N2 and Ar adsorption isotherms consisting of a less-pronounced type-I curve and a break at around p/p0 = 0.7. This behavior is ascribed to the presence of irregular micropores and 6 nm phi-mesopores in the composite film. An analysis of the isotherms shows that the porosity of the composite film is about 12%, which is much smaller than that of bulk titania gel powder. The greater density appears to be related to the reported superior properties (robustness and resistance to electrical breakdown) of the organic/inorganic multilayer film. We conclude that the QCM-based, high-precision measurement of gas adsorption is a powerful tool for investigation of the detailed morphology of nanometer-thick films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号