首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Isoelectric focusing in gels   总被引:18,自引:0,他引:18  
  相似文献   

3.
Applications of isoelectric focusing (IEF) in soil science are illustrated. The materials studied, i. e. humic substances and organic fertilisers, and their behaviour when subjected to IEF are briefly described. Preliminary studies carried out on soil indicate a relation between the isoelectric point and molecular weight, and a connection with humification has been hypothesised; therefore, assessment of soil conditions could be an application of IEF. Another application is evaluation of the stabilisation of organic fertilisers. Finally, IEF can be used to distinguish different organic matrices, as such and in mixtures with mineral fertilisers.  相似文献   

4.
5.
6.
An original micropillar array dedicated to electrophoretic separations has been developed. It consists of a rectangular zone of PDMS micropillars protruding on a PDMS block. This area has been chosen to mimic a diluted gel structure and remains uncovered to keep the ability to perform an immunoblot after the protein separation for further applications in the field of allergy diagnosis. The micropillar array geometry has been optimized by evaluating the influence of pillar shape, pillar size and interpillar distance on evaporation and IEF separation. The separation conditions namely electrolyte composition, temperature and sample loading have been studied. Finally a protein mixture with pI ranging from 4.7 to 10.6 has been successfully separated within this microdevice by IEF without decreasing the resolving power obtained with conventional minigel. The micropillar array developed for electrophoretic separations leads to much shorter analysis times and can be reused several times while gels are disposable.  相似文献   

7.
8.
9.
IEF protein binary separations were performed in a 12-μL drop suspended between two palladium electrodes, using pH gradients created by electrolysis of simple buffers at low voltages (1.5-5 V). The dynamics of pH gradient formation and protein separation were investigated by computer simulation and experimentally via digital video microscope imaging in the presence and absence of pH indicator solution. Albumin, ferritin, myoglobin, and cytochrome c were used as model proteins. A drop containing 2.4 μg of each protein was applied, electrophoresed, and allowed to evaporate until it splits to produce two fractions that were recovered by rinsing the electrodes with a few microliters of buffer. Analysis by gel electrophoresis revealed that anode and cathode fractions were depleted from high pI and low pI proteins, respectively, whereas proteins with intermediate pI values were recovered in both fractions. Comparable data were obtained with diluted bovine serum that was fortified with myoglobin and cytochrome c.  相似文献   

10.
Huang  T. -L.  Shieh  P. C. H.  Cooke  N. 《Chromatographia》1994,39(9-10):543-548
Chromatographia - An isoelectric focusing (IEF) method in the capillary format with wide linear pH range (pH 3–10) and high resolution has been developed for separations of proteins. The...  相似文献   

11.
12.
An improvement has been made to couple isoelectric focusing (IEF) sample injection and capillary zone electrophoresis in an untreated fused silica capillary. Electroosmotic flow is efficiently prevented by simply using a rubber block at the outlet end of the capillary during IEF sample injection. The experimental conditions that affect the concentration effect are discussed. A concentration enhancement factor of over 100-fold can be easily obtained for two model proteins: lysozyme and ribonuclease A.  相似文献   

13.
IEF is known as a powerful electrophoretic separation technique for amphoteric molecules, in particular for proteins. The objective of the present work is to prove the suitability of IEF also for the separation of small, non-covalent metal species. Investigations are performed with copper-glutathione complexes, with the synthetic ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) and respective metal complexes (Fe, Ga, Al, Ni, Zn), and with the phytosiderophore 2'-deoxymugineic acid (DMA) and its ferric complex. It is shown that ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid and DMA species are stable during preparative scale IEF, whereas copper-glutathione dissociates considerably. It is also shown that preparative scale IEF can be applied successfully to isolate ferric DMA from real plant samples, and that multidimensional separations are possible by combining preparative scale IEF with subsequent HPLC-MS analysis. Focusing of free ligands and respective metal complexes with di- and trivalent metals results in different pIs, but CIEF is usually needed for a reliable estimation of pI values. Limitations of the proposed methods (preparative IEF and CIEF) and consequences of the results with respect to metal speciation in plants are discussed.  相似文献   

14.
Wu XZ  Zhang LH  Onoda K 《Electrophoresis》2005,26(3):563-570
Carrier ampholyte-free isoelectric focusing (IEF) sample injection (concentration) for capillary electrophoresis (CE) is realized in a single capillary. A short section of porous capillary wall was made near the injection end of a capillary by HF etching. In the etching process, an electric voltage was applied across the etching capillary wall and electric current was monitored. When an electric current through the etching capillary was observed, the capillary wall became porous. The etched part was fixed in a vial, where NaOH solution with a certain concentration was added during the sample injection. The whole capillary was filled with pH 3.0 running buffer. The inlet end vial was filled with protein sample dissolved in the running buffer. An electric voltage was applied across the inlet end vial and etched porous wall. A neutralization reaction occurs at the boundary (interface) of the fronts of H+ and OH-. A pH step or sharp pH gradient exists across the boundary. When positive protein ions electromigrate to the boundary from the sample vial, they are isoelectricelly focused at points corresponding to their pH. After a certain period of concentration, a high voltage is applied across the whole capillary and a conventional CE is followed. An over 100-fold concentration factor has been easily obtained for three model proteins (bovine serum albumin, lysozyme, ribonuclease A). Furthermore, the IEF sample concentration and its dynamics have been visually observed with the whole-column imaging technique. Its merits and remaining problem have been discussed, too.  相似文献   

15.
Isoelectric focusing (IEF) of metallized and demetallized preparations of concanavalin A (Con A) consisting of either intact or fragmented subunits shows different band patterns. Metallized Con A consisting of intact polypeptide chains (intact Con A) has an isoelectric point (pI) 8.35. Metallized preparations consisting of fragmented chains (fragmented Con A) show three bands with pI values 8.0, 7.8 and 7.7. Demetallized intact Con A (intact apoCon A) has a pI of 6.5, however, it undergoes pH dependent association during IEF under certain conditions, which gives rise to multiple bands. Ampholyte-mediated demetallization of intact and fragmented Con A and subsequent aggregation of the apoprotein results in multiple bands during IEF in the presence of the pH range 3 to 10 ampholytes. However, ampholytes of the pH range 7 to 9 do not demetallize the proteins and show a single band with intact Con A. The pI of intact Con A remains essentially the same in the presence of inhibitory sugar. Furthermore, different moleculars forms of Con A, including locked and unlocked conformers of intact apoCon A, and the dimeric and tetramic states of both intact Con A and intact apoCon A have been identified and their pI values determined. IEF of the lentil isoelectins, LcH-A and LcH-B, shows single bands of pI 8.5 and 9.0, respectively. However, the native lectin mixture gives rise to an additional band of pI 8.8 due to a hybrid protein formed by ampholyte-mediated subunit exchange between the isolectins.  相似文献   

16.
Li C  Yang Y  Craighead HG  Lee KH 《Electrophoresis》2005,26(9):1800-1806
As an alternative material to glass or silicon, microfluidic devices made from a cyclic olefin copolymer (COC) were fabricated. This material is of interest because of the relative ease of fabrication, low costs, and solvent resistance. However, as a result of the strong hydrophobic interactions normally present, COC surfaces are not suitable for protein separations. To reduce the protein adsorption and make COC suitable for protein separations, UV-initiated grafting of polyacrylamide was used to coat the surface of COC devices. The change in surface properties caused by different graft times was studied. The surface hydrophilicity and electroosmotic mobility were characterized by contact angle and electroosmosis measurements. Isoelectric focusing was performed to test protein separations in polyacrylamide-coated COC microchannels. A single protein, carbonic anhydrase, was used to analyze the focusing effects and peak capacities in uncoated and polyacrylamide-coated COC devices. Peak capacities ranging from 75 to 190 were achieved with a polyacrylamide-coated surface. A mixture of two proteins, conalbumin labeled with Alexa Fluor 488 and beta-lactoglobulin A labeled with Alexa Fluor 546, was used to test protein separations. Linear and rapid separation of proteins was achieved in the polyacrylamide-coated COC microfluidic device.  相似文献   

17.
18.
The applications of isoelectric focusing in immobilized pH gradients in clinical chemistry and forensic analysis are reviewed. Strong emphasis is given to the separation of serum proteins, in particular alpha 1-acidic glycoprotein, acid phosphatase, alkaline phosphatase, alpha 1-antitrypsin, apolipoproteins, complement component, factor B, factor XIIIB, group-specific component, lecithin:cholesterol acyltransferase, phosphoglucomutase, prealbumin, protein C and transferrin. The analysis of human parotid salivary proteins is discussed and an assessment is given of the state of the art in thalassaemia screening.  相似文献   

19.
Isoelectric focusing (IEF) was used to distinguish 4 freshwater fish species that are sold in the European Union under the generic label of "perch": Perca fluviatilis (European perch), Lates niloticus (Nile perch), Stizostedion lucioperca (European pikeperch), and Morone chrysops x saxatilis (Sunshine bass). These species have different commercial values but are easily interchangeable because they are sold already filleted, in view of the numerous bones of the whole fish. IEF of the water-soluble proteins extracted from fish muscle resulted in species-specific patterns. None of the bands was common to all 4 species. Intraspecies polymorphism was low and did not concern the bands identified as characteristic of the species.  相似文献   

20.
Isoelectric focusing of human globin chains in polyacrylamide gels dried in the ambient atmosphere and rehydrated in the presence of 8 mol/L urea produces artefactual doublets of zones as a result of oxidation by the gel. This oxidation can be avoided in separations of short duration by adding a reducing agent (e.g. 2-mercaptoethanol or dithiothreitol to the rehydration solution (Altland, K. and Rossmann, U., Electrophoresis 1985, 6, 314-325). We now demonstrate that the observed zone doublets can be explained by assuming neutralization of the contribution of dissociated sulfhydryl group of cysteine to pI by partial and reversible formation of globin dimers held together by disulfide bridges. Long time separations, requiring e.g. more than 4 h at greater than or equal to 500 V/cm, in pH gradients exceeding pH 7.5, are accompanied by artefactual oxidation from both the atmosphere and the gel matrix. Oxidation from the atmosphere as well as the effect of carbon dioxide can be eliminated by overlayering the gel with paraffin oil. Oxidation from the gel matrix can only partially be inhibited by rehydration of gels in the presence of 2-mercaptoethanol or dithiothreitol. Nearly complete protection against oxidation by the gel matrix was achieved by adding a permanent supply of 2-ME to the gel or by adding DTT to the cathodic wick towards the end of the experiment. Alkylation with iodoacetamide or iodoacetic acid resulted in stable globin patterns, which, however, displayed additional artefactual zones. Our experimental data indicate that the polyacrylamide gels function as an electron acceptor for dissociated sulfhydryl groups in proteins, even after pretreatment with strong reducing agents for proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号