首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

2.
Monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with normal long-chain alcohols at the air/water interface was analyzed by the Langmuir trough technique with the Brewster angle microscope (BAM) observations, and the pronounced stability enhancement of a HTMA-DS monolayer with the presence of the alcohol additives was demonstrated. Two normal long-chain alcohols with alkyl chain lengths of C16 and C18, 1-hexadecanol (HD) and 1-octadecanol (OD), were chosen as the additives. The surface pressure-area and surface potential-area isotherms of the monolayers with BAM images of monolayer morphology implied that the addition of either HD or OD with a comparatively small head group in a double-chained HTMA-DS monolayer at the interface led to better molecular packing and attractive interaction between the molecules, showing a similar condensing effect as that observed in mixed phospholipid/cholesterol systems. Moreover, the monolayer hysteresis and relaxation curves indicated that the incorporation of the alcohols into a HTMA-DS monolayer was able to lessen the monolayer hysteresis and to enhance the monolayer stability. In comparison with OD, HD seemed more effective as an additive in stabilizing a HTMA-DS monolayer, most likely due to the relatively better molecular packing of HTMA-DS and HD molecules at the interface. It is inferred that the stability of a monolayer or vesicular bilayer structure composed of IPAs can be improved by adjusting the molecular packing/interaction with a suitable long-chain alcohol as the additive.  相似文献   

3.
The oxidative decarbonylation of acetic and propionic acids with the formation of the corresponding alcohol and alkyl carboxylate is observed in the RhIII/CuI,II/Cl catalytic system in the presence of O2 and CO. The decarbonylation of propionic acid in a deuterated solvent results in the substitution of hydrogen atoms by deuterium in the alkyl part of the products to form CH2DCOOD (CHD2COOH) and CHD2COOD (CD3COOH). The subsequent decarbonylation of deuterated acetic acids affords the corresponding deuteromethanols detected as esters with propionic and deuteroacetic acids. The substitution of the hydrogen atom by deuterium in the alkyl part of molecules of the products of oxidative decarbonylation of propionic acid, when the reaction is carried out in a deuterated solvent, indicates that propionic acid behaves as saturated hydrocarbon and blocks the oxidation of poorly soluble methane. Unlike propionic acid, acetic acid enters only the oxidative decarbonylation reaction and does not block methane oxidation.  相似文献   

4.
The main characteristics of Langmuir monolayers are radically changed by molecular recognition of hydrogen bond nonsurface-active species. The change in the thermodynamic, phase, and structural features by molecular recognition of dissolved uracil or barbituric acid by 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers is characterized by combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. Phase behavior of the 2C11H23-melamine monolayer and morphology of the condensed phase domains are changed drastically, but in a specific way, by molecular recognition of uracil or barbituric acid. The main characteristics of the interfacial system can be essentially affected by the kinetics of the recognition process. Pure 2C11H23-melamine monolayers show only small compact, but nontextured domains. The monolayers of 2C11H23-melamine-uracil assemblies develop well-shaped circular condensed-phase domains having an inner texture with alkyl chains essentially oriented parallel to the periphery and having a striking tendency to two-dimensional (2D) Ostwald ripening. The 2C11H23-melamine-barbituric acid monolayers form large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. BAM imaging of corresponding assemblies with ((CH3(CH2)11O(CH2)3)2-melamine having modified alkyl chains demonstrates the specific effect of the monolayer component. GIXD results reveal that molecular recognition of pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure. The striking differences in the main characteristics between the supramolecular species are related to their different chemical structures. Quantum chemical calculations using the semiempirical PM3 method provide information about the different nature of the hydrogen-bonding-based supramolecular structures.  相似文献   

5.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

6.
The monolayer behavior of the azobenzene derivative 8Az3COOH is shown to depend significatively on temperature and on the isomeric (trans-cis) composition. For pure trans monolayers, important temperature effects in the mesoscopic organization (as revealed by means of Brewster angle microscopy, BAM) are observed for the low-pressure phase in the studied temperature range (10 degrees C < T < 40 degrees C). Mixed trans-cis monolayers show that both isomers are virtually immiscible, leading to a phase segregation into birefringent, nearly pure trans droplets surrounded by an isotropic, nearly pure cis matrix. The existence of well-defined anchoring conditions at the droplet boundaries leads to highly symmetric textures, amenable of quantitative BAM image analysis, which helps to better visualize mesoscopic changes induced by variations in the control parameters (temperature, surface pressure or irradiation).  相似文献   

7.
Shape memory alloys such as nitinol (NiTi) have gained interest due to their unique and unusual properties of thermal shape memory, superelasticity, and good damping properties. Nitinol is mainly used for medical purposes. In order to control the surface properties of this alloy, self-assembled monolayers (SAMs) were formed and characterized on the native oxide surface of nitinol for the first time. Factors which affect the formation of SAMs, such as head group functionality, chain length, and tail group functionality, were varied and analyzed. Functionalized alkyl phosphonic acid molecules (OH, COOH, and CH3) formed monolayers on the nitinol surface using a simple deposition method resulting in the molecules being ordered and strongly bound to the surface. Diffuse reflectance infrared spectroscopy (DRIFT), contact angle goniometry, atomic force microscopy (AFM), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to characterize the surfaces before and after organic modification.  相似文献   

8.
In this work, we use first principles simulations to provide features of the dynamic scanning force microscopy imaging of adsorbed organic layers on insulating surfaces. We consider monolayers of formic (HCOOH) and acetic (CH(3)COOH) acid and a mixed layer of acetic and trifluoroacetic acids (CF(3)COOH) on the TiO(2)(110) surface and study their interaction with a silicon dangling bond tip. The results demonstrate that the silicon tip interacts more strongly with the substrate and the COO(-) group than the adsorbed acid headgroups, and, therefore, molecules would appear dark in images. The pattern of contrast and apparent height of molecules is determined by the repulsion between the tip and the molecular headgroups and by significant deformation of the monolayer and individual molecules. The height of the molecule on the surface and the size of the headgroup play a large role in determining access of the tip to the substrate and, hence, the contrast in images. Direct imaging of the molecules themselves could be obtained by providing a functionalized tip with attraction to the molecular headgroups, for example, a positive potential tip.  相似文献   

9.
The phase behavior of enantiomeric compounds as well as mixtures of enantiopure and racemic diastereomers of ethyl 4-fluoro-2,3-dihydroxystearates has been investigated using surface pressure-area isotherms and Brewster angle microscopy (BAM). All mixtures exhibit a small plateau region within the surface pressure-area isotherm at 20 degrees C, whereas the enantiopure compound shows an isotherm behavior similar to that of fatty acids. Corresponding to the film balance measurements, the BAM images demonstrate different shapes of the domains within the coexistence region of the liquid-condensed/liquid-expanded phase. The domain structures of the monolayers were visualized after Langmuir-Blodgett transfer on mica sheets by scanning force microscopy (SFM). From the SFM images it becomes obvious that small crystallites are formed for all investigated compounds; however, their molecular assembly is diverse for different enantiomers. Variations in the phase behavior can be correlated with interactions between the polar molecular moieties and the subphase and altered intermolecular interactions. Molecular modeling calculations were applied to elucidate the structural organization of these intermolecular interactions. Ab initio calculations of the minima conformers of (S,S,R)- and (S,S,S)-ethyl 4-fluoro-2,3-dihydroxystearates have been performed to predict with the HARDPACK program the two-dimensional lattice structure based on the P1 space group. These calculations showed that intermolecular hydrogen bridges are crucial for the interactions within and between the molecules.  相似文献   

10.
We study the surface phase behavior in Langmuir monolayers of a series of nonionic surfactants of the general formula CnE1 with n=14, 16, and 18 by film balance and Brewster angle microscopy (BAM) over a wide range of temperatures. A cusp point followed by a pronounced plateau region in the pressure-area (pi-A) isotherms indicates a first-order phase transition in the coexisting state between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase at the air-water interface. The formation of bright two-dimensional (2D) LC domains in a dark background visualized by BAM further confirms this observation. In addition to the cusp point at the onset of the LE-LC coexistence state, another cusp point followed by a small plateau is observed for the C14E1 and C18E1 monolayers, indicating a second phase transition between two condensed phases of different compressibility and tilt orientation of the molecules. This unusual two-step phase transition is explained by the Ostwald step rule. The C16E1 and C18E1 monolayers show a kink in their respective isotherms, after which the surface pressure increases steeply with only a little decrease in the molecular area, suggesting that the molecules undergo a transition from a tilted to an almost vertical orientation with respect to the water surface. The thermodynamic parameters for the condensation of the molecules in the LE-LC coexistence state were calculated by employing the 2D Clapeyron equation. The temperature coefficient of the critical surface pressure dpi(c)/dT values shows a decreasing trend from C14E1 to C18E1, suggesting that the condensation process becomes less and less prone to thermal perturbation as the chain length increases. For all the amphiphiles, the DeltaH values are found to be negative, suggesting an exothermic nature of condensation. The negative DeltaS values obtained from the relation DeltaH/T probably come from the restriction on the rotational and translational motion of the molecules constrained in a confined area in the LE-LC transition region.  相似文献   

11.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

12.
The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.  相似文献   

13.
Alkyl organic monolayers with different alkyl molecular chain lengths directly attached to silicon were prepared at 160 degrees C from 1-decene (C10), 1-dodecene (C12), 1-tetradecene (C14), 1-hexadecene (C16), and 1-octadecene (C18). These monolayers were characterized on the basis of water contact angle measurement, ellipsometry, X-ray reflectivity (XR), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXD) to elucidate the effect of the molecular chain length on the molecular arrangement and packing density of the monolayers. Water contact angle and XPS measurements showed that C12, C14, and C16 monolayers have a comparably higher quality, while the quality of C10 and C18 monolayers is worse. GIXD revealed that the alkyl monolayers directly attached to the Si were all amorphously structured regardless of their alkyl chain length. The amorphous structure of the alkyl monolayers could be attributed to the rigid Si-C bonding, low quality of hydrogen-terminated silicon substrate, and/or low mobility of physisorbed molecules.  相似文献   

14.
The morphology and composition of phase-separated Langmuir and Langmuir-Blodgett films of stearic acid (C17H35COOH) (SA) mixed with perfluorotetradecanoic acid (C13F27COOH) (PA) have been investigated using a combination of atomic force microscopy (AFM) measurements and surface pressure-area isotherms. At elevated surface pressures, the mixed film phase-separated to form a distinct series of lines (ripples), as opposed to the hexagons that have previously been observed with mixed films with longer alkyl chain fatty acids. At low surface pressures, phase separation is still observed, though a range of different domain structures was formed. The chemical composition of the phase-separated domains has been investigated by AFM-based compositional mapping, which has allowed unambiguous identification of the chemical composition of the domains. A simple mechanistic model describing how domain formation takes place in this system is presented.  相似文献   

15.
《Supramolecular Science》1995,2(3-4):219-231
The phase behavior and morphology of segregated structures are considered for mixed Langmuir monolayers, which comprise a type of supramolecular polymer having a complex internal structure mixed with a long chain fatty acid. We fabricated two different series of mixed monolayers from a polyglutamate (PG) copolymer having 30% octadecyl ester side chains and 70% methyl ester side chains and fatty acids. These mixed monolayers deposited on a solid substrate were studied by pressure-area diagram measurements, X-ray analysis, and atomic force microscopy. Stearic acid (STA) and hexacosanoic acid (HCA) with alkyl chain lengths of 17 and 25 carbon atoms, respectively, were used as low molecular weight components. For the mixture PG:STA, where the length of the STA molecules is comparable to the length of the PG side chains, we observed the formation of partially miscible monolayers. These mixtures exhibit a nanometer scale domain morphology formed by the STA molecules dissolved in the outer shell of the PG monolayer. In contrast, for the PG:HCA mixture we observed a strong tendency for microphase separation and the formation of well-defined submicron segregated structures in the monolayers. Lateral compression of the mixed monolayers to a point close to the collapse pressure promotes microphase separation in both types of mixed monolayers with the formation of anisotropic surface morphology and oriented domains.  相似文献   

16.
A fluorescence probe, fluorescein isothiocyanate (FITC), was introduced to proteins, and the morphology of protein-adsorbed stearic acid monolayer was observed by fluorescence microscopy and Brewster angle microscopy (BAM) in order to analyze images. At a low protein concentration, the surface pressure increased as shown by a sigmoidal curve. A number of stripe patterns in the BAM images increased and the shapes became clear with increasing concentration of proteins. Simultaneously, the size of circular islands also became small, and finally disappeared. These results suggest that the very large stripe patterns in the BAM image show the assembly of both proteins and stearic acid molecules, and small circular islands show only the stearic acid molecules. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

18.
The effect of alkanoic acid [CH(3)(CH(2))(n-2)COOH; HCn] and perfluoroalkanoic acid [CF(3)(CF(2))(n-2)COOH; FCn] monolayers on the water evaporation rate was investigated by thermogravimetry tracing the decrease in amount of water with time. The evaporation rate from the surface covered by a monolayer was measured as a function of temperature and hydrophobic chain length of the acids, where the monolayer was under an equilibrium spreading pressure. From thermal behavior of the crystallized acids, their solid states are C-type in crystalline state over the temperature range from 298.2 to 323.2 K. The dry air was flowed through a furnace tube of a thermogravimetry apparatus at the flow rate of 80 mL min(-1), where the evaporation rate becomes almost constant irrespective of the flow rate. The temperature dependence of the evaporation rate was analyzed kinetically to evaluate the activation energy and thermodynamics values for the activated complex, which demonstrated that these values were almost the same for both alkanoic acids and perfluoroalkanoic acids, although the effect of perfluoroalkanoic acids on the evaporation rate was smaller than that of corresponding hydrogenated fatty acids. The difference in the evaporation rate between FCn and HCn was examined by atomic force microscopy (AFM), Brewster angle microscopy (BAM), surface potential (DeltaV) at equilibrium spreading pressure, and Langmuir curve (pi-A isotherm), and their results were consistent and supported the difference.  相似文献   

19.
Mixed self-assembled monolayers (SAM) of alkyl phosphonic acids and C(60) functionalized octadecyl phosphonic acids (C(60)C(18)-PA) are deposited on alumina substrates from solution and are shown to form well-ordered structures with an insulating layer of alkyl chains and a semiconducting layer that comprises mainly C(60). Such an ordered structure is a necessity for the application of SAMs in organic transistors but is difficult to obtain since C(60)C(18)-PA without additional support do self-assemble in dense packaging but not in a well-ordered fashion. To avoid disordering of the SAM and to gain a better control of the interfacial properties we have investigated the stabilizing effects of fluorinated dodecyl phosphonic acids (FC(12)-PA) on the C(60)C(18)-PA monolayer. Vibrational sum-frequency (SFG) spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and electrical measurements were applied to study the mixed monolayers. Here, we make use of the differently labeled PA to determine surface coverages and molecular properties of the two species independently. Adsorption of FC(12)-PA gives rise to vibrational bands at 1344 cm(-1) and 1376 cm(-1) in SFG spectra, while a pronounced vibrational band centered at 1465 cm(-1) is attributable to C(60) vibrations. The coexistence of the bands is indicative for the presence of a mixed monolayer that is composed of both molecular species. Furthermore, a pronounced maximum in SFG intensity of the C(60) band is observed for SAMs, which are deposited from solutions with ~75% C(60)C(18)-PA and ~25% FC(12)-PA. The intensity maximum originates from successful stabilization of C(60) modified C(60)C(18)-PA by FC(12)-PA and a significantly improved molecular order. Conclusions from SFG spectra are corroborated by electric measurements that show best performance at these concentrations. Our results provide new information on the morphology and composition of C(60) modified SAMs and establish a route to fabricate well-defined layers for molecular scale organic electronics.  相似文献   

20.
Novel water-soluble amphiphilic triblock copolymers poly(glycerol monomethacrylate)-b-poly(propylene oxide)-b-poly(glycerol monomethacrylate) (PGMA-b-PPO-b-PGMA) were synthesized because of their expected enhanced ability to interact with biological membranes compared to the well-known poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PEO) block copolymers. Their bulkier hydrophilic PGMA blocks might induce a disturbance in the packing of liquid-crystalline lipid bilayers in addition to the effect caused by the hydrophobic PPO block alone. To gain a better insight into the polymer-membrane interactions at the molecular level, the adsorption kinetics and concomitant interactions of (PGMA14)(2-)PPO(34) with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were monitored using infrared reflection absorption spectroscopy (IRRAS) coupled with Brewster angle microscopy (BAM) and surface pressure (pi) measurements. The maximum penetration surface pressure of ca. 39 mN/m suggests that (PGMA14)(2-)PPO(34) is able to insert into lipid monolayers even above the so-called monolayer-bilayer equivalent pressure of 30-35 mN/m. Copolymer adsorption to a liquid-expanded DPPC-d62 monolayer proceeds in a two-step mechanism: (i) initially only the more hydrophobic PPO middle block penetrates the lipid monolayer; (ii) following the liquid-expanded-liquid-condensed (LE-LC) phase transition, the bulky PGMA hydrophilic blocks are dragged into the headgroup region as the PPO block inserts further into the fatty acid region. The adsorption kinetics is considerably faster for DMPC-d54 monolayers due to their higher fluidity. Copolymer adsorption to an LC-DPPC-d62 monolayer leads to a change in the monolayer packing by forcing the lipid alkyl chains into a more vertical orientation, their tilt angle with respect to the surface normal being reduced from initially 30 degrees +/- 3 degrees to 18 degrees +/- 3 degrees. BAM images rule out macroscopic phase separation and show that coalescence of DPPC-d62 LC domains takes place at relatively low surface pressures of pi > or = 23 mN/m, suggesting that (PGMA14)(2-)PPO (34) partitions into both LE as well as LC domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号