首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Reduced graphene oxide (rGO)-conjugated Cu(2)O nanowire mesocrystals were formed by nonclassical crystallization in the presence of GO and o-anisidine under hydrothermal conditions. The resultant mesocrystals are comprised of highly anisotropic nanowires as building blocks and possess a distinct octahedral morphology with eight {111} equivalent crystal faces. The mechanisms underlying the sequential formation of the mesocrystals are as follows: first, GO-promoted agglomeration of amorphous spherical Cu(2)O nanoparticles at the initial stage, leading to the transition of growth mechanism from conventional ion-by-ion growth to particle-mediated crystallization; second, the evolution of the amorphous microspheres into hierarchical structure, and finally to nanowire mesocrystals through mesoscale transformation, where Ostwald ripening is responsible for the growth of the nanowire building blocks; third, large-scale self-organization of the mesocrystals and the reduction of GO (at high GO concentration) occur simultaneously, resulting in an integrated hybrid architecture where porous three-dimensional (3D) framework structures interspersed among two-dimensional (2D) rGO sheets. Interestingly, "super-mesocrystals" formed by 3D oriented attachment of mesocrystals are also formed judging from the voided Sierpinski polyhedrons observed. Furthermore, the interior nanowire architecture of these mesocrystals can be kinetically controlled by careful variation of growth conditions. Owing to high specific surface area and improved conductivity, the rGO-Cu(2)O mesocrystals achieved a higher sensitivity toward NO(2) at room temperature, surpassing the performance of standalone systems of Cu(2)O nanowires networks and rGO sheets. The unique characteristics of rGO-Cu(2)O mesocrystal point to its promising applications in ultrasensitive environmental sensors.  相似文献   

2.
A family of monodisperse YF(3), YF(3):Ce(3+) and YF(3):Ce(3+)/Ln(3+) (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH(4) F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle-like YF(3) can be ascribed to a nonclassical crystallization process by means of a particle-based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln(3+)-doped and Ce(3+)/Ln(3+) -co-doped spindle-like YF(3) mesocrystals were also investigated. It turns out that Ce(3+) is an efficient sensitizer for Ln(3+) in the spindle-like YF(3) mesocrystals. Remarkable fluorescence enhancement was observed in Ce(3+)/Ln(3+) -co-doped YF(3) mesocrystals. The mechanism of the energy transfer and electronic transition between Ce(3+) and Ln(3+) in the host material of YF(3) mesocrystals was also explored. The cytotoxicity study revealed that these YF(3) -based nanocrystals are biocompatible for applications, such as cellular imaging.  相似文献   

3.
The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).  相似文献   

4.
A family of monodisperse YF3, YF3:Ce3+ and YF3:Ce3+/Ln3+ (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH4F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle‐like YF3 can be ascribed to a nonclassical crystallization process by means of a particle‐based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln3+‐doped and Ce3+/Ln3+‐co‐doped spindle‐like YF3 mesocrystals were also investigated. It turns out that Ce3+ is an efficient sensitizer for Ln3+ in the spindle‐like YF3 mesocrystals. Remarkable fluorescence enhancement was observed in Ce3+/Ln3+‐co‐doped YF3 mesocrystals. The mechanism of the energy transfer and electronic transition between Ce3+ and Ln3+ in the host material of YF3 mesocrystals was also explored. The cytotoxicity study revealed that these YF3‐based nanocrystals are biocompatible for applications, such as cellular imaging.  相似文献   

5.
The crystallization of CaCO3 was examined by changing the addition time of poly(acrylic acid) (PAA) to an aqueous solution of calcium carbonate by selectively interacting with the crystal at different stages during the crystal-forming process. The precipitation of CaCO3 was carried out by a double jet method to prevent heterogeneous nucleation on glass walls, and the sodium salt of PAA was added by a delayed addition method. In the initial presence of PAA in an aqueous solution of calcium carbonate, PAA acted as an inhibitor for the nucleation and growth of crystallization. However, it was found that stable vaterite particles were successfully obtained by delaying the addition of PAA from 1 to 60 min. The vaterite particles were stable in the aqueous solution for more than 30 days, and the CaCO3 particles were formed by a spherulitic growth mechanism. It is suggested that PAA strongly binds with the Ca2+ ion on the surface of CaCO3 particles to stabilize the unstable vaterite form effectively. Upon changing the addition time of PAA, we found that CaCO3 particles were formed through different formation mechanisms in selectively controlled crystallization at different stages during the crystallization process.  相似文献   

6.
Applications in the fields of materials science and nanotechnology increasingly demand monodisperse nanoparticles in size and shape. Up to now, no general purification procedure exists to thoroughly narrow the size and shape distributions of nanoparticles. Here, we show by analytical ultracentrifugation (AUC) as an absolute and quantitative high-resolution method that multiple recrystallizations of nanocrystals to mesocrystals is a very efficient tool to generate nanocrystals with an excellent and so-far unsurpassed size-distribution (PDIc=1.0001) and shape. Similar to the crystallization of molecular building blocks, nonclassical recrystallization removes “colloidal” impurities (i.e., nanoparticles, which are different in shape and size from the majority) by assembling them into a mesocrystal. In the case of nanocrystals, this assembly can be size- and shape-selective, since mesocrystals show both long-range packing ordering and preferable crystallographic orientation of nanocrystals. Besides the generation of highly monodisperse nanoparticles, these findings provide highly relevant insights into the crystallization of mesocrystals.  相似文献   

7.
张群  陈传宝  付娟  方亮  任丽英 《高分子学报》2008,(10):1010-1014
以合成的带有磺酸基为端基的线型-超支化二嵌段共聚物PEG-b-PEI-SO3H为模板,探讨了其对CaCO3结晶的影响,并用FTIR、XRD、SEM、TEM等对产物进行了表征.结果表明,带有—SO3H端基的线型-超支化双亲水性嵌段共聚物PEG-b-PEI-SO3H对CaCO3晶体形貌和晶型表现出较强的调控能力.培养1天时得到空心环状方解石型CaCO3晶体,但当培养时间为3天和5天时,得到的CaCO3晶体形貌既有河蚌状也有类球状,同时其晶型既有方解石也有球霰石,而当培养时间达到7天后,得到的就只有球状球霰石CaCO3晶体.  相似文献   

8.
Uniform mesocrystals of TiO2 (anatase) have been prepared from mesocrystals of NH4TiOF3. NH4TiOF3 was synthesized from an aqueous solution containing (NH4)2TiF6 and H3BO3 in the presence of a nonionic surfactant Brij 56, Brij 58, or Brij 700, at low temperatures. The exterior shapes of NH4TiOF3 mesocrystals can be tuned by adjusting the reagent concentration, reaction time, reaction temperature, and rate of stirring. The formation of the NH4TiOF3 mesocrystals proceeds via a self-assembly process involving nonclassical crystal growth. By sintering in air at 450 degrees C, or washing with H3BO3 solution at ambient temperatures, the NH4TiOF3 mesocrystals can be converted to mesocrystals of TiO2 (anatase), and the original architecture is retained.  相似文献   

9.
The crystallization of calcium carbonate was carried out by mixing CaCl(2) and Na(2)CO(3) solutions. The morphology of precursor formed prior to the nucleation of the polymorphous crystals (calcite and vaterite) varies depending on the feed concentration. The faster nucleation rate of polymorphous crystals in 0.2 mol/L than in 0.05 mol/L solution results in the prompt disappearance of the precursor at 0.2 mol/L. In 0.05 mol/L solutions the lifetime of the precursor is relatively long. The crystallization fraction of vaterite increases with the feed concentration and decreases with the addition rate of Na(2)CO(2) solution. Vaterite takes on the various morphologies of the aggregates of the primary flocculation body (spherulite) depending on the crystallization conditions. Vaterite transforms to calcite by a direct solution-mediated mechanism. During crystallization the concentration attains a stationary value, which increases with the feed concentration and decreases with the addition rate of Na(2)CO(2) solution. This may be due to the crystal size decrease expected from the Gibbs-Kelvin equation. Magnesium ion suppresses the transformation of vaterite by inhibiting the growth of the calcite. Magnesium ion is selectively included in calcite and causes the increase of the attained concentration and the remarkable change in the morphology of calcite especially in 0.05 mol/L solution. Copyright 2001 Academic Press.  相似文献   

10.
该文以更加接近生物矿化的方法研究了蔗糖/精氨酸体系对碳酸钙晶体取向、形貌和晶型的控制作用.XRD 分析表明,在蔗糖/L-精氨酸混合体系中合成的晶体主要为碳酸钙的球霰石晶型及少量的方解石型,在单独的蔗糖或L-精氨酸溶液中基本是球霰石晶型.SEM分析表明,蔗糖和L-精氨酸均可诱导形成特殊形貌的碳酸钙.实验结果表明,蔗糖/精...  相似文献   

11.
选用实验室自培育斯氏假单胞菌,通过测定pH值、电导率变化研究了细菌液、菌体液对碳酸钙结晶过程的影响,并通过SEM、XRD、红外等测试技术对生成的碳酸钙进行表征。 研究表明,斯氏假单胞菌细菌液与菌体液对碳酸钙结晶过程具有抑制作用,浓度增加,抑制作用越显著。 SEM、XRD和红外光谱的分析结果显示,细菌液可诱导亚稳态球霰石生成,菌体液能诱导出中孔方解石型碳酸钙。  相似文献   

12.
A facile approach, based on polyelectrolyte-mediated electrostatic adsorption of a water-soluble titanium complex on colloidal templates and hydrothermal treatment, is presented for the formation of hollow titania (TiO2) and strontium titanate (SrTiO3) spheres. Monodispersed silica gel particles were prepared by the sol?Cgel method and adopted as core templates. Deposition of a water-soluble titanium complex, titanium (IV) bis(ammoniumlactato)dihydroxide (TALH), on the silica gel particles was carried out via the layer-by-layer assembly technique. Hollow spheres were successfully formed from the core?Cshell particles. The silica gel particles used as core templates dissolved during hydrothermal treatment because of the particles?? undeveloped siloxane network. In addition, the hydrothermal treatment induced crystallization of the hollow shells. Therefore, the hydrothermal treatment played two roles; removal of the silica templates and crystallization of the hollow shells. When deionized water was used, hollow TiO2 spheres were obtained. Hollow SrTiO3 spheres could also be formed when an aqueous solution of Sr(OH)2 was used. The approach presented here could be exploited as a novel and sustainable approach for the fabrication of a range of different inorganic hollow spheres.  相似文献   

13.
Macromolecular crystallization has many implications in biological and materials science. Similar to the crystallization of other molecules, macromolecular crystallization conventionally considers a critical nucleus, followed by crystallographic packing of macromolecules to drive further crystal growth. Herein, we discover a distinctive macromolecular crystallization pathway by developing the concept of a macromolecular mesocrystal. This nonclassical polymer crystallization occurs through the mesoscale self‐assembly of (bio)macromolecular nanocrystals. The new concept for macromolecular crystallization presented herein is fundamental and relevant to many fields, including materials science, chemistry, biomimetics, nanoscience, and structural biology.  相似文献   

14.
In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.  相似文献   

15.
空心介孔WO3球的制备及光催化性能   总被引:1,自引:1,他引:0  
采用喷雾干燥法制备中空偏钨酸铵球,通过调整热处理温度制备空心介孔WO3球。结果表明:具有Keggin结构的[H2W12O40]6-金属簇的破坏温度区间为417~439℃;在热处理温度为500、550℃,仍有少量的铵根和结合水没有分解,除了WO3外,还存在(NH4)0.06WO3(H2O)0.11;当热处理温度在600℃以上时,偏钨酸铵完全分解为WO3;热处理温度为700℃,保温时间为2h,得到空心介孔WO3球。其形成机理为:空心的偏钨酸铵球,在热处理过程中由于各亚晶的位向不一致,各亚晶沿着[002]晶向择优生长,亚晶形成狭长颗粒,从而在空心球表面形成了介孔;但当热处理温度为800℃,保温时间为2 h,晶粒与晶粒之间通过合并而长大,孔道也随之消失;空心介孔WO3球具有良好的光催化效果,500 W高压汞灯照射150 min甲基蓝的降解率为65.9%。  相似文献   

16.
In this paper, a systematic study of the influence of various experimental parameters on the morphology and size of CaCO3 crystals after room-temperature crystallization from water in the presence of poly(ethylene glycol)-block-poly(methacrylic acid) (PEG-b-PMAA) is presented. The pH of the solution, the block copolymer concentration, and the ratio [polymer]/[CaCO3] turned out to be important parameters for the morphogenesis of CaCO3, whereas a moderate increase of the ionic strength (0.016 M) had no influence. Depending on the experimental conditions, the crystal morphologies can be tuned from calcite rhombohedra via rods, ellipsoids or dumbbells to spheres. A morphology map is presented which allows the prediction of the crystal morphology from a combination of pH, and CaCO3 and polymer concentration. Morphologies reported in literature for the same system but under different crystallization conditions agree well with the predictions from the morphology map. A closer examination of the growth of polycrystalline macroscopic CaCO3 spheres by TEM and time-resolved dynamic light scattering showed that CaCO3 macrocrystals are formed from strings of aggregated amorphous nanoparticles and then recrystallize as dumbbell-shaped or spherical calcite macrocrystal.  相似文献   

17.
 Crystal growth rates in colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or silica spheres having different sizes and densities are studied in microgravity by parabolic flights of an aircraft. The crystal growth rates are obtained by time-resolved reflection spectroscopy with a continuous circulating-type stopped-flow-cell system. The growth rates of alloy crystallization increase substantially in microgravity up to about 1.7 times those in normal gravity, which is in contrast to the retarding microgravity effect on the crystallization of single-component spheres. The disappearance of the segregation effect in microgravity is the main cause for the enhancing effect. The absence of convection of the suspension and the lack of downward sedimentation of colloidal spheres are also important. Received: 19 July 1999/Accepted in revised form: 1 September 1999  相似文献   

18.
《Supramolecular Science》1998,5(3-4):411-415
The effects of macromolecules as soluble additives and solid matrices have been examined for the crystallization of CaCO3. A vaterite form grows on a glass substrate in the presence of poly(glutamic acid) (PGA) containing a carboxylic acid group as a soluble additive. In contrast, no crystal growth has been observed when poly(acrylic acid) (PAA) exists as an additive though it has the same functional group. The conformation or the backbone structure of the polymers may have an influence on the crystal polymorph of CaCO3. Thin film states of CaCO3 crystals have been obtained as organic/inorganic composites with chitosan that acts as a solid matrix in the presence of PAA or PGA as a soluble additive.  相似文献   

19.
水相一步合成锐钛矿型二氧化钛空心球   总被引:2,自引:0,他引:2  
报道了水相一步直接合成晶体TiO2空心球的方法. 以水溶性的过氧化钛配合物(peroxo-titanium complex, PTC)为前驱体、聚苯乙烯(polystyrene, PS)球为模板, 在水溶液体系中可直接制备得到锐钛矿型纳米TiO2空心球. 与传统的模板法相比, 模板的包覆、去除及TiO2壳层的晶化等步骤在水相中可一步完成. 利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及热重分析仪(TGA)对所合成的纳米TiO2空心球进行了表征, 同时推断了可能的反应机理.  相似文献   

20.
Novel micrometer-sized indium oxyhydroxide (InOOH) hollow spheres were successfully synthesized via a citric acid (CA) assisted hydrothermal process. The morphology, crystal structure, and optical properties of the product were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). The optical band gap, E(g), was estimated to be 3.5 eV from the DRS spectrum, which is almost equal to that of indium oxide. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the InOOH hollow spheres has been presented; key factors for the formation of the structures have been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号