首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of two Cyanovirin-N (CVN) mutants, m4-CVN and P51G-m4-CVN, with deoxy di-mannose analogs were employed as models to generate conformational ensembles using explicit water Molecular Dynamics (MD) simulations in solution and in crystal environment. The results were utilized for evaluation of binding free energies with the molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area, MM/PB(GB)SA, methods. The calculations provided the ranking of deoxy di-mannose ligands affinity in agreement with available qualitative experimental evidences. This confirms the importance of the hydrogen-bond network between di-mannose 3'- and 4'-hydroxyl groups and the protein binding site B(M) as a basis of the CVN activity as an effective HIV fusion inhibitor. Comparison of binding free energies averaged over snapshots from the solution and crystal simulations showed high promises in the use of the crystal matrix for acceleration of the conformational ensemble generation, the most time consuming step in MM/PB(GB)SA approach. Correlation between energy values based on solution versus crystal ensembles is 0.95 for both MM/PBSA and MM/GBSA methods.  相似文献   

2.
Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.  相似文献   

3.
In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 protein-ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman's correlation coefficient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is efficient to re-score the top-hit poses produced by other less-accurate scoring functions.  相似文献   

4.
Anaplastic lymphoma kinase (ALK) has become as an important target for the treatment of various human cancers, especially non-small-cell lung cancer. A mutation, F1174C, suited in the C-terminal helix αC of ALK and distal from the small-molecule inhibitor ceritinib bound to the ATP-binding site, causes the emergence of drug resistance to ceritinib. However, the detailed mechanism for the allosteric effect of F1174C resistance mutation to ceritinib remains unclear. Here, molecular dynamics (MD) simulations and binding free energy calculations [Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)] were carried out to explore the advent of drug resistance mutation in ALK. MD simulations observed that the exquisite aromatic-aromatic network formed by residues F1098, F1174, F1245, and F1271 in the wild-type ALK-ceritinib complex was disrupted by the F1174C mutation. The resulting mutation allosterically affected the conformational dynamic of P-loop and caused the upward movement of the P-loop from the ATP-binding site, thereby weakening the interaction between ceritinib and the P-loop. The subsequent MM/GBSA binding free energy calculations and decomposition analysis of binding free energy validated this prediction. This study provides mechanistic insight into the allosteric effect of F1174C resistance mutation to ceritinib in ALK and is expected to contribute to design the next-generation of ALK inhibitors.  相似文献   

5.
Unc-51样自噬激活激酶1(unc-51-like autophagy activating kinase 1,ULK1)作为自噬启动的重要调控因子,是肿瘤治疗的关键靶点之一。首先,以已知ULK1抑制剂为基础构建药效团模型,通过药效团模型筛选、分子对接以及分子力学广义波恩表面积(Molecular Mechanics/Generalized Born Surface Area,MM/GBSA)结合自由能计算等方法,对含有52万多个类药性小分子的数据库进行虚拟筛选,得到具有较高理论亲和力的化合物。随后,50ns的分子动力学模拟验证了蛋白质-配体复合物结合的稳定性,最后10ns的平均结合自由能的计算研究进一步验证了配体的结合能力。结果表明,6个化合物(F5258-0159、F3407-0428、F0529-1100、F0696-3531、F3222-5280、F6525-5596)具有骨架新颖、分子对接分数和结合自由能数值优异及与ULK1的结合状态稳定等特点,可以作为新型潜在的ULK1抑制剂用于肿瘤治疗的研究,也为新型ULK1抑制剂的设计和研发提供新的研究思路。  相似文献   

6.
The molecular mechanics/generalized Born surface area (MM/GBSA) method has been investigated with the aim of achieving a statistical precision of 1 kJ/mol for the results. We studied the binding of seven biotin analogues to avidin, taking advantage of the fact that the protein is a tetramer with four independent binding sites, which should give the same estimated binding affinities. We show that it is not enough to use a single long simulation (10 ns), because the standard error of such a calculation underestimates the difference between the four binding sites. Instead, it is better to run several independent simulations and average the results. With such an approach, we obtain the same results for the four binding sites, and any desired precision can be obtained by running a proper number of simulations. We discuss how the simulations should be performed to optimize the use of computer time. The correlation time between the MM/GBSA energies is ~5 ps and an equilibration time of 100 ps is needed. For MM/GBSA, we recommend a sampling time of 20–200 ps for each separate simulation, depending on the protein. With 200 ps production time, 5–50 separate simulations are required to reach a statistical precision of 1 kJ/mol (800–8000 energy calculations or 1.5–15 ns total simulation time per ligand) for the seven avidin ligands. This is an order of magnitude more than what is normally used, but such a number of simulations is needed to obtain statistically valid results for the MM/GBSA method. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

7.
The ability to predict and characterize free energy differences associated with conformational equilibria or the binding of biomolecules is vital to understanding the molecular basis of many important biological functions. As biological studies focus on larger molecular complexes and properties of the genome, proteome, and interactome, the development and characterization of efficient methods for calculating free energy becomes increasingly essential. The aim of this study is to examine the robustness of the end-point free energy method termed the molecular mechanics Poisson-Boltzmann solvent accessible surface area (MM/PBSA) method. Specifically, applications of MM/PBSA to the conformational equilibria of nucleic acid (NA) systems are explored. This is achieved by comparing A to B form DNA conformational free energy differences calculated using MM/PBSA with corresponding free energy differences determined with a more rigorous and time-consuming umbrella sampling algorithm. In addition, the robustness of NA MM/PBSA calculations is also evaluated in terms of the sensitivity towards the choice of force field and the choice of solvent model used during conformational sampling. MM/PBSA calculations of the free energy difference between A-form and B-form DNA are shown to be in very close agreement with the PMF result determined using an umbrella sampling approach. Further, it is found that the MM/PBSA conformational free energy differences were also in agreement using either the CHARMM or AMBER force field. The influence of ionic strength on conformational stability was particularly insensitive to the choice of force field. Finally, it is also shown that the use of a generalized Born implicit solvent during conformational sampling results in free energy estimates that deviate slightly from those obtained using explicitly solvated MD simulations in these NA systems.  相似文献   

8.
We present free energy estimates of nine 3-amidinobenzyl-1H-indole-2-carboxamide inhibitors of factor Xa. Using alchemical thermodynamic integration (TI) calculations, we estimate the difference in binding free energies with high accuracy and precision, except for mutations involving one of the amidinobenzyl rings. Crystal studies show that the inhibitors may bind in two distinct conformations, and using TI, we show that the two conformations give a similar binding affinity. Furthermore, we show that we can reduce the computational demand, while still retaining a high accuracy and precision, by using fewer integration points and shorter protein-ligand simulations. Finally, we have compared the TI results to those obtained with the simpler MM/GBSA method (molecular-mechanics with generalized Born surface-area solvation). MM/GBSA gives better results for the mutations that involve a change of net charge, but if a precision similar to that of the TI method is required, the MM/GBSA method is actually slightly more expensive. Thus, we have shown that TI could be a valuable tool in drug design.  相似文献   

9.
We have studied whether calculations of the binding free energy of small ligands to a protein by the MM/GBSA approach (molecular mechanics combined with generalized Born and surface area solvation) can be sped up by including only a restricted number of atoms close to the ligand. If the protein is truncated before the molecular dynamics (MD) simulations, quite large changes are observed for the calculated binding energies, for example, 4 kJ/mol average difference for a radius of 19 Å for the binding of nine phenol derivatives to ferritin. The results are improved if no atoms are fixed in the simulations, with average and maximum errors of 2 and 3 kJ/mol at 19 Å and 3 and 6 kJ/mol at 7 Å. Similar results are obtained for two additional proteins, p38α MAP kinase and factor Xa. On the other hand, if energies are calculated on snapshots that are truncated after the MD simulation, all residues more than 8.5 Å from the ligand can be omitted without changing the energies by more than 1 kJ/mol on average (maximum error 1.4 kJ/mol). At the molecular mechanics level, the gain in computer time for such an approach is small. However, it shows what size of system should be used if the energies instead are calculated with a more demanding method, for example, quantum‐mechanics. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
The complexation of an adamantyl-phosphate derivative with one beta-cyclodextrin, with two beta-cyclodextrins, and with two beta-cyclodextrins dimerized with a disulfide bridge was studied by computational methods (MD, MM/PBSA, and MM/GBSA) to analyze and rationalize the chelate effect. Although this effect is usually explained by invoking favorable entropy contribution due to the preorganization of the ligand, it has been determined experimentally that in this case it is enthalpy-driven. The computational results are in accord with this finding, although the entropy contribution due to the solvent structural organization around the complex is crucial for the final estimates of the free energy of complexation.  相似文献   

11.
We have estimated affinities for the binding of 34 ligands to trypsin and nine guest molecules to three different hosts in the SAMPL3 blind challenge, using the MM/PBSA, MM/GBSA, LIE, continuum LIE, and Glide score methods. For the trypsin challenge, none of the methods were able to accurately predict the experimental results. For the MM/GB(PB)SA and LIE methods, the rankings were essentially random and the mean absolute deviations were much worse than a null hypothesis giving the same affinity to all ligand. Glide scoring gave a Kendall's τ index better than random, but the ranking is still only mediocre, τ = 0.2. However, the range of affinities is small and most of the pairs of ligands have an experimental affinity difference that is not statistically significant. Removing those pairs improves the ranking metric to 0.4-1.0 for all methods except CLIE. Half of the trypsin ligands were non-binders according to the binding assay. The LIE methods could not separate the inactive ligands from the active ones better than a random guess, whereas MM/GBSA and MM/PBSA were slightly better than random (area under the receiver-operating-characteristic curve, AUC = 0.65-0.68), and Glide scoring was even better (AUC = 0.79). For the first host, MM/GBSA and MM/PBSA reproduce the experimental ranking fairly good, with τ = 0.6 and 0.5, respectively, whereas the Glide scoring was considerably worse, with a τ = 0.4, highlighting that the success of the methods is system-dependent.  相似文献   

12.
通过分子对接建立了一系列含二氟甲基磷酸基团(DFMP)或二氟甲基硫酸基团(DFMS)的抑制剂与酪氨酸蛋白磷酸酯酶1B(PTP1B)的相互作用模式, 并通过1 ns的分子动力学模拟和molecular mechanics/generalized Born surface area (MM/GBSA)方法计算了其结合自由能. 计算获得的结合自由能排序和抑制剂与靶酶间结合能力排序一致; 通过基于主方程的自由能计算方法, 获得了抑制剂与靶酶残基间相互作用的信息, 这些信息显示DFMP/DFMS基团的负电荷中心与PTP1B的221位精氨酸正电荷中心之间的静电相互作用强弱决定了此类抑制剂的活性, 进一步的分析还显示位于DFMP/DFMS基团中的氟原子或其他具有适当原子半径的氢键供体原子会增进此类抑制剂与PTP1B活性位点的结合能力.  相似文献   

13.
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.  相似文献   

14.
To validate a method for predicting the binding affinities of FabI inhibitors, three implicit solvent methods, MM‐PBSA, MM‐GBSA, and QM/MM‐GBSA were carefully compared using 16 benzimidazole inhibitors in complex with Francisella tularensis FabI. The data suggests that the prediction results are sensitive to radii sets, GB methods, QM Hamiltonians, sampling protocols, and simulation length, if only one simulation trajectory is used for each ligand. In this case, QM/MM‐GBSA using 6 ns MD simulation trajectories together with GBneck2, PM3, and the mbondi2 radii set, generate the closest agreement with experimental values (r2 = 0.88). However, if the three implicit solvent methods are averaged from six 1 ns MD simulations for each ligand (called “multiple independent sampling”), the prediction results are relatively insensitive to all the tested parameters. Moreover, MM/GBSA together with GBHCT and mbondi, using 600 frames extracted evenly from six 0.25 ns MD simulations, can also provide accurate prediction to experimental values (r2 = 0.84). Therefore, the multiple independent sampling method can be more efficient than a single, long simulation method. Since future scaffold expansions may significantly change the benzimidazole's physiochemical properties (charges, etc.) and possibly binding modes, which may affect the sensitivities of various parameters, the relatively insensitive “multiple independent sampling method” may avoid the need of an entirely new validation study. Moreover, due to large fluctuating entropy values, (QM/)MM‐P(G)BSA were limited to inhibitors’ relative affinity prediction, but not the absolute affinity. The developed protocol will support an ongoing benzimidazole lead optimization program. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Developing chemicals that inhibit checkpoint kinase 1 (Chk1) is a promising adjuvant therapeutic to improve the efficacy and selectivity of DNA-targeting agents. Reliable prediction of binding-free energy and binding affinity of Chk1 inhibitors can provide a guide for rational drug design. In this study, multiple docking strategies and Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA) calculation were applied to predict the binding mode and free energy for a series of benzoisoquinolinones as Chk1 inhibitors. Reliable docking results were obtained using induced-fit docking and quantum mechanics/molecular mechanics (QM/MM) docking, which showed superior performance on both ligand binding pose and docking score accuracy to the rigid-receptor docking. Then, the Prime/MM-GBSA method based on the docking complex was used to predict the binding-free energy. The combined use of QM/MM docking and Prime/MM-GBSA method could give a high correlation between the predicted binding-free energy and experimentally determined pIC(50) . The molecular docking combined with Prime/MM-GBSA simulation can not only be used to rapidly and accurately predict the binding-free energy of novel Chk1 inhibitors but also provide a novel strategy for lead discovery and optimization targeting Chk1.  相似文献   

16.
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl‐tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l ‐tyrosine (l ‐Tyr), compared to the analogs d ‐Tyr, p‐acetyl‐, and p‐azido‐phenylalanine (ac‐Phe, az‐Phe). We simulate l ‐ and d ‐Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous “MD/GBSA” procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l ‐Tyr, ac‐ and az‐Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l ‐Tyr or d ‐Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l ‐Tyr is the ligand and a d ‐Tyr specific mutant when d ‐Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The aqueous solvation free energies of ionized molecules were computed using a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1, MNDO, and PM3 semiempirical molecular orbital methods for the solute molecule and the TIP3P molecular mechanics model for liquid water. The present work is an extension of our model for neutral solutes where we assumed that the total free energy is the sum of components derived from the electrostatic/polarization terms in the Hamiltonian plus an empirical “nonpolar” term. The electrostatic/polarization contributions to the solvation free energies were computed using molecular dynamics (MD) simulation and thermodynamic integration techniques, while the nonpolar contributions were taken from the literature. The contribution to the electrostatic/polarization component of the free energy due to nonbonded interactions outside the cutoff radii used in the MD simulations was approximated by a Born solvation term. The experimental free energies were reproduced satisfactorily using variational parameters from the vdW terms as in the original model, in addition to a parameter from the one-electron integral terms. The new one-electron parameter was required to account for the short-range effects of overlapping atomic charge densities. The radial distribution functions obtained from the MD simulations showed the expected H-bonded structures between the ionized solute molecule and solvent molecules. We also obtained satisfactory results by neglecting both the empirical nonpolar term and the electronic polarization of the solute, i.e., by implementing a nonpolarization model. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1028–1038, 1999  相似文献   

18.
End-point methods such as linear interaction energy (LIE) analysis, molecular mechanics generalized Born solvent-accessible surface (MM/GBSA), and solvent interaction energy (SIE) analysis have become popular techniques to calculate the free energy associated with protein-ligand binding. Such methods typically use molecular dynamics (MD) simulations to generate an ensemble of protein structures that encompasses the bound and unbound states. The energy evaluation method (LIE, MM/GBSA, or SIE) is subsequently used to calculate the energy of each member of the ensemble, thus providing an estimate of the average free energy difference between the bound and unbound states. The workflow requiring both MD simulation and energy calculation for each frame and each trajectory proves to be computationally expensive. In an attempt to reduce the high computational cost associated with end-point methods, we study several methods by which frames may be intelligently selected from the MD simulation including clustering and address the question of how the number of selected frames influences the accuracy of the SIE calculations.  相似文献   

19.
Generalized Born Surface Area (GBSA) models for water using the Pairwise Descreening Approximation (PDA) have been parameterized by two different methods. The first method, similar to that used in previously reported parameterizations, optimizes all parameters against the experimental free energies of hydration of organic molecules. The second method optimizes the PDA parameters to compensate only for systematic errors of the PDA. The best models are compared to Poisson-Boltzmann calculations and applied to the computation of potentials of mean force (PMFs) for the association of various molecules. PMFs present a more rigorous test of the ability of a solvation model to correctly reproduce the screening of intermolecular interactions by the solvent, than its accuracy at predicting free energies of hydration of small molecules. Models derived with the first method are sometimes shown to fail to compute accurate potentials of mean force because of large errors in the computation of Born radii, while no such difficulties are observed with the second method. Furthermore, accurate computation of the Born radii appears to be more important than good agreement with experimental free energies of solvation. We discuss the source of errors in the potentials of mean force and suggest means to reduce them. Our findings suggest that Generalized Born models that use the Pairwise Descreening Approximation and that are derived solely by unconstrained optimization of parameters against free energies of hydration should be applied to the modeling of intermolecular interactions with caution.  相似文献   

20.
Estimating protein-protein interaction energies is a very challenging task for current simulation protocols. Here, absolute binding free energies are reported for the complex H-Ras/C-Raf1 using the MM-PB(GB)SA approach, testing the internal consistency and model dependence of the results. Averaging gas-phase energies (MM), solvation free energies as determined by Generalized Born models (GB/SA), and entropic contributions calculated by normal mode analysis for snapshots obtained from 10 ns explicit-solvent molecular dynamics in general results in an overestimation of the binding affinity when a solvent-accessible surface area-dependent model is used to estimate the nonpolar solvation contribution. Applying the sum of a cavity solvation free energy and explicitly modeled solute-solvent van der Waals interaction energies instead provides less negative estimates for the nonpolar solvation contribution. When the polar contribution to the solvation free energy is determined by solving the Poisson-Boltzmann equation (PB) instead, the calculated binding affinity strongly depends on the atomic radii set chosen. For three GB models investigated, different absolute deviations from PB energies were found for the unbound proteins and the complex. As an alternative to normal-mode calculations, quasiharmonic analyses have been performed to estimate entropic contributions due to changes of solute flexibility upon binding. However, such entropy estimates do not converge after 10 ns of simulation time, indicating that sampling issues may limit the applicability of this approach. Finally, binding free energies estimated from snapshots of the unbound proteins extracted from the complex trajectory result in an underestimate of binding affinity. This points to the need to exercise caution in applying the computationally cheaper "one-trajectory-alternative" to systems where there may be significant changes in flexibility and structure due to binding. The best estimate for the binding free energy of Ras-Raf obtained in this study of -8.3 kcal mol(-1) is in good agreement with the experimental result of -9.6 kcal mol(-1), however, further probing the transferability of the applied protocol that led to this result is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号