首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of bis(siloxy)silanone groups (Si-0)2Si=O stabilized on a silica surface with respect to H2 molecules was studied. The reaction was found to give the (Si-O)2SiH(OH) groups. The rate constant for this process was determined. Its activation energy in the 300–580 K temperature range is 13.4±0.3 kcal mol–1, and the enthalpy is 54±5 kcal mol–1. The activation energy for the reverse reaction,viz., elimination of a hydrogen molecule, is equal to 65 kcal mol–1. Quantum-chemical calculations of hydrogenation of F2Si=O and (HO)2Si=O, which are the simplest molecular models of the silanone groups, were performed. Data on the geometrical and electronic structures of transition states and on the effects of substituents at the silicon atom on the reactivity of the silanone groups in this process were obtained. The optical absorption band of the surface silanone groups was quantitatively characterized. Its maximum is located at 5.65±0.1 eV; the extinction coefficient at the maximum (220 nm) is (3±0.5) · 10–18 cm2 molec.–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1951–1958, August, 1996.  相似文献   

2.
The mechanisms of the proton transfer in associates of two molecules of formic acid with one molecule of hydrazine or hydrogen peroxide were studied usingab initio (SCFj6-31G**) method. The mechanism of cooperative (concerted, one-step) four-proton transfer is realized in the associate with the hydrazine molecule. The proton transfer occurs stepwisevia an intermediate in the associate with a hydrogen peroxide molecule. The calculated activation barriers to the proton transfer in the associates investigated are 34.7 kcal mol–1 and 27.1 kcal mol–1, respectively.Translated fromlzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2631–2635, November, 1996.  相似文献   

3.
Using the rotating disc method, the rates of dissolution of natural monoclinic pyrrhotite, FeS1.14, in oxygen-free aqueous solutionsS([H+]=0.1, [Na+]=0.9, [ClO 4 ]=1.0 mol kg–1) were determined. In the temperature range 40–90 °C the dissolution reaction occurs under kinetic control; the activation energy being 14±1 kcal mol–1 (50±5 kJ mol–1).
Die Kinetik der Auflösung von monoklinem Pyrrhotin in sauren wäßrigen Lösungen
Zusammenfassung Die Auflösungsgeschwindigkeit von natürlichem monoklinen Pyrrhotin, FeS1.14, wurde in sauerstofffreien LösungenS([H+]=0.1, [Na+]=0.9, [ClO 4 ]=1.0 mol kg–1) mit Hilfe der Methode der rotierenden Scheibe bestimmt. Im Temperaturbereich von 40–90° erfolgt die Auflösungsreaktion kinetisch kontrolliert, wobei eine Aktivierungsenergie von 14±1 kcal mol–1 (59±5 kJ mol–1) gefunden wurde.
  相似文献   

4.
A non-covalent interaction force field model derived from the partition coefficient of 1-octanol/water solubility is described. This model, HINT for Hydropathic INTeractions, is shown to include, in very empirical and approximate terms, all components of biomolecular associations, including hydrogen bonding, Coulombic interactions, hydrophobic interactions, entropy and solvation/desolvation. Particular emphasis is placed on: (1) demonstrating the relationship between the total empirical HINT score and free energy of association, G interaction; (2) showing that the HINT hydrophobic-polar interaction sub-score represents the energy cost of desolvation upon binding for interacting biomolecules; and (3) a new methodology for treating constrained water molecules as discrete independent small ligands. An example calculation is reported for dihydrofolate reductase (DHFR) bound with methotrexate (MTX). In that case the observed very tight binding, G interaction–13.6 kcal mol–1, is largely due to ten hydrogen bonds between the ligand and enzyme with estimated strength ranging between –0.4 and –2.3 kcal mol–1. Four water molecules bridging between DHFR and MTX contribute an additional –1.7 kcal mol–1 stability to the complex. The HINT estimate of the cost of desolvation is +13.9 kcal mol–1.  相似文献   

5.
The far infrared spectrum [350 to 25 cm–1] of gaseous chloroacetaldehyde, ClCH2CHO, has been recorded at a resolution of 0.10 cm–1. The first excited-state transition of the asymmetric torsion of the more stable near s-cis [chlorine atom s-cis to the aldehyde hydrogen atom] conformer has been observed at 26.9 cm–1, with seven additional upper state transitions falling to higher frequency. Additionally, the fundamental torsional transition of the s-trans conformer has been observed at 58.9 cm–1 with two excited states also falling to higher frequency. From these data, the asymmetric torsional potential coefficients have been determined to be:V 1=414±11;V 2 = 191±3;V 3=–203±5;V 4=44±1 andV 6=–26±1 cm–1. The s-cis to s-trans barrier is 500±5 cm–1 (1.43±0.01 kcal mol–1) with the s-cis conformer being more stable by 267±19 cm–1 (0.76±0.05 kcal mol–1) than the s-trans form. The Raman [4000 to 100 cm–1] and infrared (4000 to 400 cm–1] spectra of the gas have been recorded. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values obtained. Complete vibrational assignments are proposed for both conformers based on band contours, depolarization values, and group frequencies. The assignments are supported by ab initio Hartree-Fock gradient calculations employing the 3–21G* basis set to obtain the frequencies and the potential energy distributions for the normal vibrations for both rotamers. Additional ab initio calculations at the MP4/6-31G* level have been carried out to determine the structural parameters for both conformers. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.This contribution taken in part from the thesis of C. L. Tolley which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

6.
We have calculated the geometry and energy of the valence tautomers benzene oxide and oxepin using the semiempirical AM1 model and the 6–31G and 6–31G* basis sets utilizing full geometry optimization. In the oxide the folding angle, the angle between the epoxide ring and the adjacent plane containing four carbon atoms, is about 106°. The carbon skeleton is almost planar, the folding angle, the angle between the two four-carbon atom planes being about 175°. In contrast, oxepin is found to have a marked boat-shaped structure with the corresponding and angles about 137° and 159°, respectively. The AM1, 6–31G, and 6–31G* calculations give –11.4, –10.8, and –2.9 kcal mol–1 for the energy change that accompanies the valence tautomerism, oxide-oxepin, compared to an experimental value of about +0.3 kcal mol–1. Single point calculations of the energies at the 6–31 G* geometry using Møller-Plesset perturbation theory to second order (MP2/6–31 G*) and third order (MP3/6–31G*) give E T =+3.3 and +0.8 kcal mol–1. The values for the energy change in the transfer of epoxide oxygen from ethylene oxide to benzene using AM1, 6–31G, and 6–31G* are in good agreement, viz., +31.1, +34.5, and +33.6 kcal mol–1, respectively. A large positive energy change is to be expected in view of the loss of benzene aromaticity.  相似文献   

7.
Mechanisms of the proton transfer in dimeric associates of formic acid with nitrous, nitric, orthophosphoric, and sulfuric acids were studied by theab initio (HF/6-31G**) method. The mechanism of the cooperative (concerted or one-step) proton transfer was shown to occur in all cases. The calculated activation barriers of the proton transfer reactions for the associates investigated are equal to 19.9, 14.2, 13.3, and 10.7 kcal mol–1, respectively.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2184–2189, September, 1996.  相似文献   

8.
Gas-phase reaction of acetylene with HgCl2 resulting in -chlorovinylmercury derivatives and their interaction with Cl and I anions and KI molecule was studied by the ab initio MP2 method with the Dunning—Hay double zeta basis set and LanL pseudopotential for Hg, K, and I atoms. The reaction was shown to proceed via a -complex of acetylene and HgCl2 (the calculated enthalpy of formation is –6.5 kcal mol–1). According to calculations, the activation energy of formation of cis--chlorovinylmercury chloride from acetylene and HgCl2 is 31 kcal mol–1. Chloride and iodide anions and KI molecule are readily added to both cis- and trans-isomer of -chlorovinylmercury chloride to give stable species.  相似文献   

9.
Thermal isomerization of acetylnitrene: a quantum-chemical study   总被引:1,自引:0,他引:1  
The electronic structure and pathways of thermal isomerization of formylnitrene and acetylnitrene were studied by the B3LYP/6-311G(d,p) density functional method and ab initio G2(MP2,SVP) computational procedure using the geometries obtained from B3LYP calculations. According to G2 calculations, both nitrenes have singlet ground states while the energies of the corresponding triplet states are 2.8 and 5.7 kcal mol–1 higher. For acetylnitrene, the activation barrier to the nitrene isocyanate isomerization was estimated at 28.9 kcal mol–1 (G2). Calculations revealed no pathway for single-step isomerization of nitrene into cyanate in both systems. The formation of methyl cyanate from isocyanate is thermodynamically unfavorable (E = 26.5 kcal mol–1) and requires a high activation barrier (89.4 kcal mol–1) should be overcome. Based on the results obtained, the pathways of transformation of nitrene formed in thermal decomposition of acetyl azide (Curtius rearrangement) were analyzed.  相似文献   

10.
The dissociation energy of the C-H bonds in hydrocarbons, alcohols, and ethers were calculated by semiempirical MNDO, AM1, and PM3 methods. The average error of calculations of theD(C-H) values by using various quantum-chemical methods is 1.3 kcal mol–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2858–2861, December, 1996.  相似文献   

11.
The twenty-one-dimensional Hamiltonian of malonaldehyde molecule and a number of its isotopomers (H/D, 13C/12C) was reconstructed in the low-energy region (<3000 cm–1). Parameters of the Hamiltonian were obtained from quantum-chemical calculations of the energies, equilibrium geometries, and eigenvectors and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and transition state. Despite substantial variation of the barrier height calculated using different quantum-chemical methods (from 2.8 to 10.3 kcal mol–1), the corresponding potential energy surfaces can be matched with high accuracy by scaling only one parameter (the semiclassical parameter , which defines the scales of potential, energy, and action). Scaling invariance allows optimization of the Hamiltonian in such a way that the calculated ground-state tunneling splitting coincides with the experimental value. The corresponding potential barrier height is estimated at 4.34±0.4 kcal mol–1. The quantum dynamics problem was solved using the perturbative instanton approach without reducing the number of degrees of freedom. The role of all transverse vibrations in proton tunneling is characterized. Vibration-tunneling spectrum is calculated for the ground state and low-lying excited states and mode-specific isotope effects are predicted.  相似文献   

12.
Orthoperiodic and orthotelluric acids, their salts MIO6H4 (M = Li, Rb, Cs) and CsH5TeO6, and dimers of the salt · acid type are calculated within density functional theory B3LYP and basis set LanL2DZ complemented by the polarizationd,p-functions. According to calculations, the salt · acid dimerization is energetically favorable for compounds MIO6H4 · H5IO6 (M = Rb, Cs) and CsIO6H4 · H6TeO6. The dimerization energy is equal to 138–146 kJ mol–1. With relatively small activation energies equal to 4 kJ mol–1 (M = Li) and 11 kJ mol–1 (M = Rb, Cs), possible is rotation of octahedron IO6 relative to the M atom in monomers of salt molecules. The proton transfer along an octahedron occurs with activation energies of 63–84 kJ mol–1. The activation energy for the proton transfer between neighboring octahedrons of the type salt · acid acid · salt equals 8–17 kJ mol–1. Quantum-chemical calculations nicely conform to x-ray diffraction and electrochemical data.  相似文献   

13.
Summary Ab initio molecular orbital calculations give small stabilization energies for the various Na(CH4)+ adducts (less than 4 kcal mol–1), but predict a stronger binding for the copper compounds (about 13 kcal mol–1). The different behaviour of Na+ and Cu+, already present at the SCF level, is reinforced by electron correlation. This can be attributed to an important contribution of the dispersion energy to the binding energy of the copper ion: about 40% of the total, including basis set superposition corrections.Dedicated to Mrs A. Pullman  相似文献   

14.
Molecular mechanics and MNDO calculations showed that the six-membered ring in the molecule of 5-oxo-1,3-cyclohexadiene possesses high conformational mobility. The transition from a planar equilibrium conformation to a distorted sofa conformation in which the C(sp2)-C(=O)-C(sp3)-C(sp2) torsion angle is equal to ±30° increases the energy of the molecule by less than 1 kcal mol–1. The influence of steric (R = Me, Et, Pri, But) and electronic (R = NH2, NO2) effects of substituents R on the equilibrium conformation and mobility of the carbocycle has been analyzed. Both types of substituents at unsaturated C atoms do not change the equlibrium conformation or flexibility of the six-membered ring. Substituents at saturated C atoms cause the transition of the carbocycle to the distorted sofa conformation and significantly restrict its mobility. The electronic structures of 5-oxo-1,3-cyclohexadiene and its amino and nitro derivatives have been analyzed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 849–854, May, 1995.  相似文献   

15.
The infrared spectra (3200 to 30 cm–1) of gaseous and solid chloroacetyl bromide, CH2ClC(O)Br, and the Raman spectra (3200 to 10 cm–1) of the gas, liquid (with depolarization data), and solid have been recorded. From the observed asymmetric torsional transitions, the potential function governing internal rotation of the CH2Cl moiety has been determined with the following coefficients:V 1=336±11,V 2=73±10,V 3=757+7,V 4=103±3, andV 6=5±2 cm–1. This potential function is consistent with s-trans to gauche and gauche to gauche barriers of 963±11 and 709±12cm–1, respectively, and enthalpy difference of 373 ± 24 cm–1 with the dihedral angle of the gauche rotamer being 115°. The enthalpy difference has been determined experimentally from the studies of the Raman spectra at different temperatures to be 359±68 cm–1 (1.03±0.19 kcal mol–1) and 507±24 cm–1 (1.45±0.07 kcal mol–1) for the gas and liquid, respectively, with the s-trans conformer being the more stable conformer in the gas and liquid and the only one present in the annealed solid. A complete assignment of the vibrational fundamentals is proposed from spectral data obtained for the gas, liquid, and solid. The assignment is supported by a normal coordinate calculation utilizing a modified valence force field to obtain the frequencies for the normal vibrations and the potential energy distribution. The results are discussed and compared to the corresponding quantities for some similar molecules.Taken in part from the thesis of H. V. Phan, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

16.
PCILO and ab initio calculations have been performed to investigate the energies associated to rotation about the central bond in n-butane and methyl ethyl ether. Quantum mechanical energies have been fit to a classical intramolecular force field, containing torsional and nonbonded (Lennard-Jones 6–12 plus Coulomb) contributions, with a standard deviation comprised between 0.03 and 0.09 kcal mol–1. Two conditions have proved indispensable to reach such level of accuracy: (a) the use of a torsional potential with threefold periodicity, which corrects for the part of the rotation barrier not covered by van der Waals repulsions and may be interpreted as bond-bond repulsion; (b) the introduction in the force field for ethers of terms accounting for orbital interaction effects of different nature than the normal molecular mechanics nonbonded interactions; these terms are represented either by low order rotational potential functions or preferably by interactions of atoms simulating lone-pair orbitals and bonded to oxygen in such a way as to render it sp 3-hybridized. According to ab initio, the height of the threefold torsional potential about C-C and C-O bonds is comparable and is of the order of 3 kcal mol–1. According to PCILO, it is larger for C-C (ca. 1.5 kcal mol–1) than for C-O (ca. 0.5 kcal mol–1).  相似文献   

17.
Conformational analysis of di-ortho-substituted diphenylmethanes and Biphenyl ethers containing I, CCH, and CCCCH substituents was carried out by the molecular mechanics method using the MM3 program. Several minima on the potential energy surface, which correspond to thegg, gt, tg, andort conformations, were found. An increase in the length of the linear substituent results in a substantial decrease in the difference in the relative energies of conformers. Barriers to conformational transitions between thegt, tg, andort conformers are less than 2 kcal mol–1. The transitionort-gg requires expenditure of energy of up to 5 kcal mol–1. Two valleys of centrosymmetric pairs of thegt, tg, andort conformers are separated by a barrier of up to 6 kcal mol–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No, 12, pp, 2882–2885, December, 1996.  相似文献   

18.
The inhibiting action of aniline and its derivatives on the corrosion of copper in hydrochloric acid has been investigated, with emphasis on the role of substituents. With this purpose five different anilines were selected: aniline, p-chloro aniline, p-nitro aniline, p-methoxy and p-methyl aniline. The electrochemical and gravimetric results, obtained in the absence and presence of different concentrations of inhibitors, revealed that aniline reduces the corrosion of copper, with a critical concentration of 10–2 M. Furthermore, the interaction energy calculated as Gads gave a value of 4.2 kcal mol–1 indicating physisorption of the organic compound at the copper surface. The results have also shown that substituents, either electron donors (–CH3, –OCH3) or, electron acceptors (–NO2, –Cl) in para position, decrease the inhibition action of aniline. A theoretical study using molecular mechanic and ab initio Hartree Fock methods, to model the adsorption of aniline on copper (100) showed results in good agreement with the experimental data. Aniline adsorbs parallel to the copper surface, showing no preference for a specific adsorption site. On the other hand, from ab initio Hartree Fock calculations, an adsorption energy between 2 kcal/mol and 5 kcal/mol is obtained, which is close to the experimental value, confirming that the adsorption of aniline on the metal substrate is rather weak. In view of these results, the orientation of the aniline molecule with respect to the copper surface is considered to be the dominant effect.  相似文献   

19.
The structure of the peroxyacetic acid (PAA) molecule and its conformational mobility under rotation about the peroxide bond was studied by ab initio and density functional methods. The free rotation is hindered by the trans-barrier of height 22.3 kJ mol–1. The equilibrium molecular structure of AcOOH (C s symmetry) is a result of intramolecular hydrogen bond. The high energy of hydrogen bonding (46 kJ mol–1 according to natural bonding orbital analysis) hampers formation of intermolecular associates of AcOOH in the gas and liquid phases. The standard enthalpies of formation for AcOOH (–353.2 kJ mol–1) and products of radical decomposition of the peroxide — AcO· (–190.2 kJ mol–1) and AcOO· (–153.4 kJ mol–1) — were determined by the G2 and G2(MP2) composite methods. The O—H and O—O bonds in the PAA molecule (bond energies are 417.8 and 202.3 kJ mol–1, respectively) are much stronger than in alkyl hydroperoxide molecules. This provides an explanation for substantial contribution of non-radical channels of the decomposition of peroxyacetic acid. The electron density distribution and gas-phase acidity of PAA were determined. The transition states of the ethylene and cyclohexene epoxidation reactions were located (E a = 71.7 and 50.9 kJ mol–1 respectively).  相似文献   

20.
According to ab initio molecular orbital calculations carried out with full geometry optimization at the MP2/6–31G** level, the classical 2-fluoroethyl cation, FCH2CH2+, is a transition structure for H-scrambling in CH3CHF+. Single point MP4/6–31G** calculations at the optimized geometries predict the cyclic ethylene fluoronium ion to lie 24.2 kcal mol−1 above CH3CHF+ and 5.4 kcal mol−1 below the 2-fluoroethyl cation. ΔG‡ for ring opening of the cyclic fluoronium ion at -60° is estimated to be ca 15 kcal mol−1. This barrier is largely attributable to the powerful negative fluorine hyperconjugation in the transition state as described by Hoffmann and coworkers. When electron correlation effects are ignored a qualitatively different potential surface is obtained on which the 2-fluoroethyl cation is calculated to be a local minimum separated from the stable 1-fluoroethyl cation by an H-bridged transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号