首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A cyclodextrin induced room temperature phosphorimetry (CD-RTP) for determine beta-NOA, which using I- as a heavy atom perturber (HAP) and sodium sulfite as a deoxygenator, was developed. The phosphorescence peak wavelength maxima lambda(ex)/lambda(em) = 287/496,521 nm. The analytical curve of beta-NOA gives a linear dynamic range of 2.0 x 10(-7)-6.0 x 10(-6) mol/l and a detection limit of 4 x 10(-8) mol/l. The relative standard deviation (RSD; n = 7) was 3.2% for the 4.0 x 10(-6) mol/l beta-NOA in spiked apple samples. The influence of I- concentration on RTP lifetime of beta-NOA was studied in detail, the static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. It is found that the relation between I- concentration (x) and RTP lifetime (tau) can be expressed as tau = 1.047 e(-0.354x) and the rate constants of phosphorescence emission k(p) and non-radiation process k(i) from T1 --> S0 were 0.9551 s(-1) and 0.4276 s(-1) l(-1) mol, respectively.  相似文献   

2.
Liquid phase room temperature phosphorescence (RTP) properties of melatonin were studied using heavy atom induced-room temperature phosphorescence (HAI-RTP) technique. 1.2 M potassium iodide was used as a heavy atom reagent together with 0.002 M sodium sulphite as deoxygenating agent to produce the RTP signal. The maximum phosphorescence emission and excitation wavelengths of melatonin were 290 and 457 nm, respectively. The effect of potassium iodide concentration on the RTP lifetime of melatonin was also investigated and based on the results, the rate constants for phosphorescence decay (k(p)) and radiationless deactivation through reaction with heavy atom (k(h)) were determined. Based on the obtained results, a simple and sensitive room temperature phosphorimetric method was developed for the determination of melatonin. The method allowed the determination of 10.0-200 ng ml(-1) melatonin in aqueous solution with the limits of detection and quantification of 3.6 and 12 ng ml(-1), respectively. The proposed method was satisfactorily applied to the determination of melatonin in commercial pharmaceutical formulations.  相似文献   

3.
A direct and simple non-protected room temperature phosphorimetry (NP-RTP) for determine propranolol, which using I- as a heavy atom perturber and sodium sulfite as a deoxygenator, has been developed. The phosphorescence peak wavelength maxima lambda(ex)/lambda(em) = 288/494, 522 nm. The analytical curve of propranolol gives a linear dynamic range of 8.0 x 10(-8)-2.0 x 10(-5) mol l(-1) and a detection limit of 3 x 10(-8) mol l(-1). The influence of I- concentration on RTP lifetime of propranolol was studied and the luminescence kinetic parameters were calculated. It is found that the relation between I- concentration (x) and RTP lifetime (tau) can be expressed as tau = 1.25e(-0.477x) and the rate constants of phosphorescence emission k(p) was 0.800 per ms. The method was applied directly to determination of propranolol in urine and drug tablets with a satisfactory result. The recoveries were 96.6-97.4% and the relative standard deviation was 2% for the 1.00 x 10(-6)-4.00 x 10(-6) mol l(-1) propranolol in spiked urine sample.  相似文献   

4.
A selective and sensitive room temperature phosphorimetric method for the direct determination of naftopidil in biological fluids is described. The method is based on obtaining a phosphorescence signal from this antihypertensive drug using TlNO3 as a heavy atom perturber and Na2SO3 as a deoxygenator agent without a protective medium. This technique is named non-protected room temperature phosphorescence (NP-RTP), and enables us to determine analytes in complex matrices without the need for a tedious prior separation process. The optimization of Na2SO3 (8.5 x 10(-3) M) and the accurate value of pH (9.0) were determined using a simplex as a method of optimization. Sodium carbonate-hydrogencarbonate buffer solution (5.0 x 10(-2) M) was used to adjust the suitable pH. The optimum concentration of Tl+ (8.5 x 10(-2) M) was also determined. The delay time, gate time and time between flashes selected were 200 microseconds, 200 microseconds and 5 ms, respectively. Under the above conditions we propose a method to determine naftopidil by direct measurement of phosphorescence intensity with an emission wavelength of 526 nm and an excitation wavelength of 296 nm in the concentration range 0.05-1.00 mg L-1. Under these conditions the phosphorescence signal appears in 3 min once the sample has been prepared. Optimization of the various conditions permitted the establishment of an NP-RTP method for the determination with a detection limit, according to the error propagation theory, of 21.0 ng mL-1. The repeatability was studied using 10 solutions of 0.20 mg L-1 of naftopidil; if error propagation is assumed, the relative error is 1.39%. The standard deviation for replicate samples was 1.1 x 10(-2) mg L-1. This method was successfully applied to the determination of naftopidil, in human urine with recoveries between 106 and 112%.  相似文献   

5.
Non-protected fluid room temperature phosphorescence, NPRTP, has been applied to the determination of naftopidil in biological fluids. The proposed method is based on obtaining a phosphorescence signal from naftopidil using potassium iodide as heavy atom perturber and sodium sulfite as a deoxygenating reagent without a protected medium. Optimized conditions for the determination were 1.4 mol L= KI, 5.0 x l0(-3) mol L(-1) sodium sulfite, pH 6.5 (adjusted with sodium hydrogen phosphate-dihydrogen phosphate buffer solution, 5.0 x 10(-2) mol L(-1). The delay time, gate time, and time between flashes were 70 micros, 400 micros, and 5 ms, respectively. The maximum phosphorescence signal appeared instantly and the intensity was measured at lambda(ex)=287 nm and lambda(em)=525 nm. The response obtained was linearly dependent on concentration in the range 50 to 600 ng mL(-1). The detection limit, according to error-propagation theory, was 7.93 ng mL(-1) and the detection limit as proposed by Clayton was 11.12 ng mL(-1). The repeatability was studied by using ten solutions of 400 ng mL(-1) naftopidil; if the theory of error propagation is assumed the relative error is 0.88%. The standard deviation of replicates was found to be 3.5 ng mL(-1). This method was successfully applied to the analysis of naftopidil in human serum and urine with recoveries of 104.0 +/- 0.6% for serum and 106.0 +/- 1.0% for urine.  相似文献   

6.
Abstract— Phosphorescence of organic molecules in fluid solutions may be conveniently and readily observed under certain conditions. If k p (radiative phosphorescence rate constant) is 10s-1, then (in the absence of photoreaction) phosphorescence is observable upon N2 purging. For example, nitrogen purged, acetonitrile solutions of bromo and dibromonaphthalene display readily observable phosphorescence as a result of internal heavy atom enhancement of πS, and k p. External heavy atom enhancement of k, (CH2BrCH2Br solvent) of aromatic hydrocarbons even allows observation of phosphorescence from these compounds in N2 purged fluid solutions. Although bromonaphthalenes are not significantly phosphorescent in N2 purged aqueous solution, phosphorescence is readily observed in N2 purged detergent (HDTBr, HDTCl, and SDS) solutions above the critical micelle concentration. The general factors which determine whether phosphorescence is "readily" obervable in fluid solution are briefly discussed and the results are interpreted in light of these factors.  相似文献   

7.
The determination of kinetic parameters for luminescence processes is very important in understanding the phosphorescence process and the mechanisms of the heavy atom effect (HAE). In our previous work, we reported that room temperature phosphorescence (RTP) emission of many naphthalene derivatives can be induced directly from their aqueous solution without using any kind of protective medium, and the name Non-Protected Fluid Room Temperature Phosphorescence (NP-RTP) is suggested for this new type of RTP emission. In order to further understand this kind of luminescence phenomenon, the influence of heavy atom perturber (HAP) concentration on RTP lifetime of several naphthalene derivatives was studied in detail in this paper. The possibility of determination of photophysical parameters for emission of NP-RTP was explored based on the definition on the phosphorescence lifetime and the relation with the concentration of HAP in this paper. A static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. The results obtained by two different ways proved that photophysical parameters for RTP emission can be determined based on the changes of the RTP lifetime.  相似文献   

8.
Tang B  Wang X  Wang G  Wang Y  Chen Z 《The Analyst》2005,130(7):1038-1045
A strong and stable room temperature phosphorescence (RTP) signal (lambda(ex)/lambda(em) = 298/481 nm) resulting from a 1:1:1 beta-cyclodextrin (beta-CD)/thiabendazole (TBZ)/triton X-100 (TX-100) supramolecular ternary inclusion complex was induced by KI as a heavy atom perturber. Based on the heavy-atom induced RTP, a new phosphorescence method for TBZ determination was established. The analytical curve of TBZ gave a linear range of 20-820 ng mL(-1) with a detection limit and relative standard deviation of 2.1 ng mL(-1) and 1.9%, respectively. The interference of 46 coexisting substances was studied. Compared with the method using a chemical oxygen scavenger, this method is simpler as deoxygenation of the solution is not required. The detection limit and the heavy-atom concentration of the proposed method were decreased about 8 and 4 times, respectively. The lifetime of the phosphorescence was prolonged 9 times and the pH range was greatly broadened. The proposed method has been successfully applied to the determination of TBZ in tap water, lake water and pineapples.  相似文献   

9.
Owing to the unique molecular structure and aggregate behaviors in aqueous solution, dihydroxy bile salts can provide phosphorescent probe with a special microenvironment in which the room temperature phosphorescence of probe can be detected in the presence of dissolved oxygen. It, however, is not very clear how the bile salts work in inducing this kind of oxygen-independent phosphorescence. The present work tries to offer with possible more insights by investigating the particular kinetic behaviors of 3-bromoquinoline (3-BrQ) as probe in sodium deoxycholate (NaDC) aggregate based on phosphorescent quenching methodology. The critical aggregate concentration of NaDC is estimated as about 0.5mM based on the enhancement of probe phosphorescence. As the functions of quencher Cu(2+) and NO(2)(-), the rate constants of various photophysical processes for 3-BrQ are obtained in NaDC solution and full aqueous solution, respectively. In NaDC solution, the quenching rate constant k(cu2+) equals to 1.77x10(7)M(-1)s(-1) k(no-2)(mq) 1.62x10(6)M(-1)s(-1). The exit rate k(-) and entrance rate k(+) are determined to be 16-46s(-1) and 10(6)M(-1)s(-1) levels, respectively. The quenching rate constant k(o2)(q) of dissolved oxygen is estimated as 4.15x10(4)M(-1)s(-1) in air-saturated NaDC solution at 1atm.  相似文献   

10.
The phosphorescence properties of 6-bromo-2-naphthyl sulfate (BNS) in aqueous solution were studied. The phosphorescence lifetime is several hundred microseconds and is self-quenched. Although a fluorescent photoproduct is formed from BNS, it does not interfere with the decay properties of triplet-state BNS and its utility as a probe of the accessibility of the heme group in heme proteins. Quenching of BNS phosphorescence does not occur for the non-heme protein lysozyme and apomyoglobin but occurs by a dynamic mechanism with a quenching constant of 1-2 x 10(9) M-1 s-1 for cytochrome c and myoglobin and with a quenching constant of 6.2 x 10(9) M-1 s-1 for protoporphyrin IX. The phosphorescence of an inclusion complex of 1-bromonaphthalene and beta-cyclodextrin is not quenched by heme-containing proteins. The temperature and viscosity dependencies of the rate with which BNS phosphorescence is quenched by microperoxidase-11 are consistent with unit quenching efficiency. These results indicate that quenching of BNS phosphorescence occurs only upon contact with the quencher, and the quenching constant can be used to assess the degree of accessibility of the heme group.  相似文献   

11.
The reaction of the H* atom with O2, giving the hydroperoxyl HO2* radical, has been investigated in pressurized water up to 350 degrees C using pulse radiolysis and deep-UV transient absorption spectroscopy. The reaction rate behavior is highly non-Arrhenius, with near diffusion-limited behavior at room temperature, increasing to a near constant limiting value of approximately 5 x 10(10) M(-1) s(-1) above 250 degrees C. The high-temperature rate constant is in near-perfect agreement with experimental extrapolations and ab initio calculations of the gas-phase high-pressure limiting rate. As part of the study, reaction of the OH* radical with H2 has been reevaluated at 350 degrees C, giving a rate constant of (6.0 +/- 0.5) x 10(8) M(-1) s(-1). The mechanism of the H* atom reaction with the HO2* radical is also investigated and discussed.  相似文献   

12.
A novel method for producing nanosized polymer latex particles doped with fluorescent and phosphorescent solutes is described. Methyl methacrylate monomer (10 wt %) containing either pyrene, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DMDP), or 1-bromonaphthalene was ultrasonically dispersed in water and simultaneously polymerized to produce approximately 60 nm diameter latex particles. A fluorescence spectroscopic examination of the latex dispersion containing either pyrene or DMDP showed that the solutes were not covalently bound to the polymer and that they were embedded in a highly viscous environment possessing a low polarity (dielectric constant on the order of 2). The fluorescence lifetime of the pyrene in the core of the poly(MMA) latex was found to be 520 ns, irrespective of the oxygen concentration in the dispersion. Room-temperature phosphorescence was observed from 1-bromonaphthalene, with a lifetime of 2.0 ms in an argon atmosphere. In the presence of air, phosphorescence was still observable although with a partially reduced emission intensity.  相似文献   

13.
《中国化学快报》2022,33(2):851-854
A phosphorescent supramolecular foldamer is conveniently constructed by the 1:1 host–guest complexation with cucurbit[8]uril and 1,2-diaminocyclohexane-bridged 4-(4-bromophenyl)-pyridinium salt. The tightly compact host–guest complexation in molecular foldamer can greatly suppress the fluorescence emissive channel and promote the intersystem crossing from singlet to triplet states, thus leading to the green phosphorescence at ambient temperature in aqueous solution. More intriguingly, the phosphorescence emission shows very rapid and sensitive responsiveness to different antibiotics in both inanimate milieu and living cells. Remarkably, the limit of detection of such binary inclusion complex toward sulfamethazine can reach as low as 1.86 × 10?7 mol/L. Thus, it is envisaged that this supramolecular nanoplatform featuring unique complexation-enhanced phosphorescence emission may hold great promise in sensing and detecting many other biological targets under physiological environment.  相似文献   

14.
The solid-substrate room-temperature phosphorescence (SS-RTP) of two commercially available metalloporphyrin compounds, zinc(II) protoporphyrin (ZnPP) and tin(IV) protoporphyrin (SnPP) has been studied. Strong and stable RTP signals of the two metalloporphyrins in neutral to weakly basic solutions can be simply induced on filter paper without addition of external heavy atom perturbers. Their emission bands appeared at 723 nm for ZnPP and 718 nm for SnPP at an excitation wavelength of 417 nm. Compared with SnPP, ZnPP is a better RTP probe for DNA because its RTP enhancement effect is much higher under the same experimental conditions. The interaction of ZnPP with DNA at pH 8.5 gives an apparent binding constant of 9.1 x 10(3) which is similar to that of the cationic porphyrin absorption probe CuTMPyP (copper (II)- tetrakis(4-N-methylpyridyl)porphine complex). Hydrogen bonding between the monocarboxylic acid substituent of ZnPP and the base pairs of DNA plays a crucial role in the binding.  相似文献   

15.
Novel neutral mixed-ligand Ir(N=C=N)(N=C)X complexes (N=C=N = 1,3-bis(3-methylpyrazolyl)benzene (bpzb), 1,5-dimethyl-2,4-bis(3-methylpyrazolyl)benzene (dmbpzb), and 1,5-difluoro-2,4-bis(3-methylpyrazolyl)benzene (dfbpzb); N=C = 2-phenyl pyridine (ppy); and X = Cl or CN) have been synthesized and characterized. An X-ray single-crystal structure of the complex Ir(dmbpzb)(ppy)Cl shows that the nitrogen atom in the ppy ligand occupied the trans position to the carbon atom in the tridentate N=C=N ligand of dmbpzb with the Ir-C bond length of 1.94(1) A, whereas the coordinating carbon atom occupied the trans position of chlorine. Electrochemical data show that the complexes exhibit an oxidation Ir(III/IV) process in the potential range of +0.5 approximately 0.9 V and two irreversible reductions at approximately -2.6 and -3.0 V against Fc (0)/Fc (+), respectively. All of the Ir(III) complexes do not emit phosphorescence at room temperature, although strong phosphorescence is exhibited at 77 K with the 0-0 transition centered at around 450 nm and lifetimes of 3-14 mus. DFT calculations indicate that the HOMOs are mainly localized on iridium 5dpi and chlorine ppi*, whereas the LUMOs are mainly from the ppy ligand pi* orbitals. The phosphorescence originates from a (3)LC state mixed with the (3)MLCT and (3)XLCT ones. Temperature-dependent lifetime measurements of Ir(dfbpzb)(ppy)Cl reveal the existence of a thermal deactivation process with a low activation energy (1720 cm (-1)) and very high frequency factor (2.3 x 10 (13) s (-1)). An unrestricted density functional theory indicates that the dd state, in which both the Ir-N (pyrazolyl) bond lengths increase considerably, exists almost at the same energy as that for the phosphorescent state. A thorough analysis based on the potential energy surfaces for the T 1 and S 0 states allows us to determine the reaction pathway responsible for this thermal deactivation. The calculated activation energies of 1600 approximately 1800 cm (-1) are in excellent agreement with the observed values.  相似文献   

16.
The phosphorescence spectra and triplet state lifetimes of palladium octaethylporphyrin (PdOEP), palladium octaethylchlorin (PdOEC) and palladium 2,3-dimethyloctaethylisobacteriochlorin (PdOEiBC) in n-octane Shpolskii matrices at 77 K are reported. The lifetime and T(1)/S(0) origin energy of each complex are: PdOEP, 1.90+/-0.04 ms, 15162 cm(-1); PdOEC, 0.43+/-0.03 ms, 12547 cm(-1) and PdOEiBC, 0.59+/-0.03 ms, 12863 cm(-1).  相似文献   

17.
The dinuclear gold complexes [{Au(PPh 3)} 2(mu- dmid)] ( 1) ( dmid = 1,3-dithiole-2-one-4,5-dithiolate) and [{Au(PPh 3)} 2(mu- dddt)] ( 2) ( dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) were synthesized and characterized by X-ray crystallography. Both complexes exhibit intramolecular aurophilic interactions with Au...Au distances of 3.1984(10) A for 1 and 3.1295(11) A for 2. A self-assembly reaction between 4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione ( (HOCH 2 CH 2 ) 2 dmit) and [AuCl(tht)] affords the complex [AuCl{ (HOCH 2 CH 2 ) 2 dmit}] 2 ( 4), which possesses an antiparallel dimeric arrangement resulting from a short aurophilic contact of 3.078(6) A. This motif is extended into two dimensions due to intra- and intermolecular hydrogen bonds via the hydroxyethyl groups, giving rise to a supramolecular network. Three compounds were investigated for their rich photophysical properties at 298 and 77 K in 2-MeTHF and in the solid state; [Au 2(mu- dmid)(PPh 3) 2] ( 1), [Au 2(mu- dddt)(PPh 3) 2] ( 2), and [AuCl{( HOCH 2 CH 2 ) 2 dmit}] ( 4). 1 exhibits relatively long-lived LMCT (ligand-to-metal charge transfer) emissions at 298 K in solution (370 nm; tau e approximately 17 ns, where M is a single gold not interacting with the other gold atom; i.e., the fluxional C-SAuPPh 3 units are away from each other) and in the solid state (410 nm; tau e approximately 70 mus). At 77 K, a new emission band is observed at 685 nm (tau e = 132 mus) and assigned to a LMCT emission where M is representative for two gold atoms interacting together consistent with the presence of Au...Au contacts as found in the crystal structure. In solution at 77 K, the LMCT emission is also red-shifted to 550 nm (tau e approximately 139 mus). It is believed to be associated to a given rotamer. 2 also exhibits LMCT emissions at 380 nm at 298 K in solution and at 470 nm in the solid state. 4 exhibits X/MLCT emission (halide/metal to ligand charge transfer) where M is a dimer in the solid state with obvious Au...Au interactions, resulting in red-shifted emission band, and is a monomer in solution in the 10 (-5) M concentration (i.e., no Au...Au interactions) resulting in blue-shifted luminescence. Both fluorescence and phosphorescence are observed for 4.  相似文献   

18.
《Analytica chimica acta》2003,489(2):165-171
We present here the first study of the effect of substituent groups and the chemical structure of fluorene derivatives on phosphorescent emission. A group of fluorene derivatives have been studied with a new methodology of room-temperature phosphorescence emission called heavy atom induced room-temperature phosphorescence (HAI-RTP). This methodology makes use of RTP emission directly from the compound in fluid solution, without a protective medium but only with the presence of high concentrations of heavy atom perturbers and an oxygen scavenger. These experimental conditions permit sufficient interaction between the perturbers and the phosphors to produce effective population of the triplet states of the latter and, consequently, intense phosphorescent emission. Good deoxygenation conditions are obtained using sodium sulfite as the oxygen scavenger. We show here that it is possible that many fluorene derivatives can exhibit RTP emission in aqueous solutions in the absence of a protective medium. Phosphorescence spectral characteristics of these compounds (excitation and emission wavelengths and lifetime) and the optimization of the chemical variables involved in the phosphorescence phenomenon are reported. Under optimal experimental conditions, calibration graphs and detection and quantification limits in the ng ml−1 level have been established.  相似文献   

19.
A new 9-diphenylphosphinophenanthrene ligand (9DPP, 1), its oxide (9DPPO, 2), and its gold complex [(AuCl(9DPP)] (3) were synthesized. The Au(I) complex 3 was found to exhibit intense blue-green, room-temperature phosphorescence (Phip = 0.06 and tauT = 22.7 micros) originating in the locally excited triplet of the phenanthrene moiety (3LE) in degassed 2-methyltetrahydrofuran solution. On the assumption that PhiST = 1.0 for 3, the radiative rate constant (kr) in the triplet state is calculated to be 2.6 x 10(3) s(-1). This value is 4 orders of magnitude larger than the radiative rate constant of the triplet phenanthrene (0.26 s(-1)). Thus, the coordinated Au(I) atom is concluded to have a markedly large heavy-atom effect on kr of the phenanthrene chromophore in 3.  相似文献   

20.
A series of new fluorine-containing poly(aryl ether ketone)s (8F-PEKEK(Ar); Ar: 2-2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA), 2,2-bis(4-hydroxyphenyl)propane (BA), 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane (3,4-BA) or 9,9-bis(4-hydroxyphenyl)fluorine (HF)) are synthesized and applied to the matrix of optical oxygen sensing using phosphorescence quenching of metalloporphyrins, platinum and palladium octaethylporphyrin, (PtOEP and PdOEP) by oxygen. The phosphorescence intensity of PtOEP and PdOEP in 8F-PEKEK(Ar) films decreased with increase of oxygen concentration. The ratio I0/I100 is used as a sensitivity of the sensing film, where I0 and I100 represent the detected phosphorescence intensities from a film exposed to 100% argon and 100% oxygen, respectively. For PtOEP in 8F-PEKEK(Ar) film, I0/I100 values are more than 20.0 and large Stern-Volmer constants more than 0.19%−1 are obtained compared with PtOEP in polystyrene film. For PdOEP in 8F-PEKEK(Ar) film, on the other hand, the large I0/I100 values more than 143 are obtained. However, the Stern-Volmer plots of PdOEP in 8F-PEKEK(Ar) films exhibit considerable linearity at lower oxygen concentration range between 0% and 20%. These results indicate that PtOEP and PdOEP films are useful optical oxygen sensor at the oxygen concentration range between 0% and 100% and between 0% and 20%, respectively. The response times of PtOEP and PdOEP dispersed in 8F-PEKEK(Ar) films are 5.6 and 3.0 s on going from argon to oxygen and 110.1 and 160.0 s from oxygen to argon, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号