首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal organic chemical vapor deposition has been investigated for growth of Bi2Te3 films on (0 0 1) GaAs substrates using trimethylbismuth and diisopropyltelluride as metal organic sources. The results of surface morphology, electrical and thermoelectric properties as a function of growth parameters are given. The surface morphologies of Bi2Te3 films were strongly dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of VI/V and deposition temperature. By optimizing growth parameters, we could clearly observe an electrically intrinsic region of the carrier concentration at the temperature higher than 240 K. The high Seebeck coefficient (of −160 μVK−1) and good surface morphology of this material is promising for Bi2Te3-based thermoelectric thin film and two-dimensional supperlattice device applications.  相似文献   

2.
Si-rich silicon oxide (SiOx, 1<x<2) films were prepared by RF magnetron reactive sputtering or co-sputtering on the Si(1 1 1) substrates. X-ray diffraction patterns showed that the peak of silicon nanocrystals (NCs), separated from SiOx films, had (1 1 1) preferred orientation. The results of scanning electron microscopy indicated the Si NCs uniting into clusters. We demonstrated that the photoluminescence (PL) peaks at 650 nm was caused by defect center. In particular, we discussed the correlation between the PL and the structure of SiOx films. The mean size of the Si NCs was estimated to be about 3 nm by the PL peak position.  相似文献   

3.
Uniform, submicron BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid–solid reaction method mainly via two simple steps: firstly, BaO2·H2O2 submicron particles of about 130–450 nm were precipitated from the reaction of BaCl2 and H2O2 in a slightly alkaline (pH 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2·H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 °C for 10 h. The as-obtained products were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy.  相似文献   

4.
Large-scale SiC nanocables were synthesized on a Ni(NO3)2-catalyzed Si substrate by using a simple and cheap method based on thermal decomposition of methanol. Based on X-ray diffraction and high-magnification transmission electron microscopy, the as-grown nanocables consisted of crystalline SiC cores and amorphous SiO2 shells. The diameters of SiC cores were 5.7–10 nm and the thicknesses of SiO2 shells were 9–20 nm. Dividing of nanocables was observed and its origin was investigated. An asymmetric feature of SiC TO band with a shoulder at the high-frequency side was attributed to the contribution of SiC TO mode. The nanocables displayed strong violet–blue emission. A possible growth mechanism was proposed.  相似文献   

5.
In this study, single-crystal γ-MnO2 nanowires have been successfully synthesized at room temperature in the absence of catalysts or templates, the diameter was found to be ca. 10–20 nm and the characteristic lengths up to several micrometers. The crystal phase of nanowires was confirmed by XRD and TEM measurements. Further, a dissolution– condensation–recrystallization process was proposed for the formation of nanowires under the room temperature condition.  相似文献   

6.
Selective growth of WO2, W and WO3−x crystals from amorphous WO3 film by vacuum heating at 400–900°C was clarified. The grown WO3−x crystals were incommensurate structure based on crystallographic share structure. The growth process of WO2 crystal in the amorphous film was directly observed at high temperature in the electron microscope. The growth front of the WO2 crystal consumes WO3 microcrystallites with various orientations. The growth speed of the WO2 depended on WO3 microcrystallites orientation. The origin of the wavy growth front of WO2 was due to an orientation dependence of the WO3 microcrystallites.  相似文献   

7.
Homogeneous and transparent V2O5–TiO2 composite nanometer thin films were prepared on glass substrates by sol–gel processing and dip-coating technique. The films as well as the dried powder of bulk gel were characterized by different techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), atomic force microscope (AFM) and thermogravimetry–differential thermal analysis (TG–DTA). The hydrophilicity of the films was determined by measuring the water contact angles on the films. The results showed that the dopant of V2O5 on TiO2 thin films could produce a visible-light response to the films, and the introduction of V2O5 could suppress the structural phase transition and crystal growth of TiO2 crystal. Finally, the relationship between crystalline size and hydrophilicity under sunlight was investigated in this article.  相似文献   

8.
Indium oxide (In2O3) nanobelts have been fabricated by thermal evaporation of metallic indium powders with the assistance of Au catalysts. The as-synthesized nanobelts are single-crystalline In2O3 with cubic structure, and usually tens of nanometers in thickness, tens to hundreds of nanometers in width, and several hundreds of micrometers in length. The room temperature photoluminescence spectrum of In2O3 nanobelts features a broad emission band at 620 nm, which could be attributed to oxygen deficiencies in the as-synthesized belts. The formation of In2O3 nanobelts follows a catalyst-assistant vapor—liquid–-solid growth mechanism, which enables the controlled growth of individual belts on predetermined sites.  相似文献   

9.
Novel dumbbell-like SrSO4 with hierarchical architecture was fabricated with a facile template-free aqueous solution method at room temperature. The crystallographic morphology of SrSO4 products depends mainly on the pH value of the reaction solution. The SrSO4 products exhibit a dumbbell-like hierarchical architecture at pH=3 and 5, and have a tablet-like crystallographic morphology at pH=1 when keeping other reaction parameters unchanged. The dumbbell-like SrSO4 synthesized at pH=3 has a length of 8–14 μm, and is composed of numerous well-aligned single crystalline nanoplates with an average width of 140 nm and a length of 0.7–1 μm. The Brunauer–Emmett–Teller (BET) surface area of the crystallized SrSO4 products is about 2.8 m2 g−1. A formation mechanism is proposed for the evolution process of dumbbell-like SrSO4 with hierarchical architecture.  相似文献   

10.
Dielectric layer containing CoSi2 nanocrystals was directly fabricated by plasma-enhanced atomic layer deposition using CoCp2 and NH3 plasma mixed with SiH4 without annealing process. Synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy results confirmed the formation of CoSi2 nanocrystal. The gate stack composed of dielectric layer containing CoSi2 nanocrystals with ALD HfO2 capping layer together with Ru metal gate was analyzed by capacitance–voltage (CV) measurement. Large hysteresis of CV curves indicated charge trap effects of CoSi2 nanocrystals. The current process provides simple route for the fabrication of nanocrystal memory compatible with the current Si device unit processes.  相似文献   

11.
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.  相似文献   

12.
The Ca3Y2(BO3)4:Er3+ crystal with a size up to 20 mm×30 mm was grown by the Czochralski method. The absorption spectrum was measured and its absorption peaks were assigned to the corresponding transitions between the Er3+ energy levels. A broad emission spectrum from 1429.4 to 1662.8 nm was exhibited from 530 nm wavelength pumping. This crystal is promising as a tunable infrared laser crystal.  相似文献   

13.
Aiming at tailoring optical properties, the precipitation of LaF3 nano-crystals in LaF3–Na2O–Al2O3–SiO2 glass-ceramics is studied thoroughly on the nano-scale using advanced transmission electron microscopic techniques. Nano-sized phase-separation droplets enriched in lanthanum and silicon are formed already in the base glass. Within these less than 20 nm large droplets, LaF3 crystallizes upon heat treatment. The nano-crystallization mechanism revealed is self-limited since growth is restricted by the size of the droplets. An average crystallite size of around 12 nm is achieved with a narrow size distribution since the phase-separation droplets also contain silicon not incorporated into the growing crystal. Instead, excess silicon relocated to the periphery of the pre-existing phase-separation droplets forms a diffusion barrier around the LaF3 nano-crystals preventing further crystal growth and/or ripening.  相似文献   

14.
Neodymium (Nd) doped lutetium gallium garnet (Nd:Lu3Ga5O12, Nd:LuGG) single crystal was successfully grown by the optical floating-zone method for the first time to our knowledge. Its absorption and luminescence spectra at room temperature were measured. By using the J–O theory, the spectral parameters of Nd:LuGG were calculated, which indicated that Nd:LuGG should possess comparable and even better laser properties than Nd:YAG. The maximum output power of 855 mW at 1062 nm was achieved with slope efficiency of 23.4% under a pump power of 5.2 W, and optical conversion efficiency of 16.4%. All the results show that Nd:LuGG is a potential laser material.  相似文献   

15.
Clustered anatase phase TiO2 particles were uniformly formed on the surface of glass fibers by a liquid phase deposition (LPD) method at 60 °C using TiF4 and H3BO3 as the precursors. The clustered TiO2 particles deposited on the glass fibers and as a photocatalyst these particles not only have a larger surface area than TiO2 thin films, but also can avoid the disadvantages of using TiO2 powders encountered in air purification or water treatment. The photocatalytic activity of the sample was evaluated by the photocatalytic oxidation of nitrogen monoxide (NO) in the gaseous phase. The deposition conditions and chemical composition of the clustered TiO2 particles were discussed. It was found that the clustered TiO2 particles that formed on the glass fibers obviously showed photocatalytic activity without high-temperature calcination. A formation mechanism was proposed to account for the formation of TiO2 clustered morphology on the glass fibers.  相似文献   

16.
Single crystals of KInO2 were obtained from a reactive potassium hydroxide flux at 700 °C. KInO2 crystallizes in the R-3m crystal system with a=3.2998(10) Å, c=18.322(10) Å and V=172.78(12) Å3. The crystal structure is isotypic with that of α-NaFeO2 and consists of the (1 1 1) layers being occupied alternately by KO6 and InO6 octahedra. Three different AInO2 structure types are discussed.  相似文献   

17.
Ga2O3 nanobelts were synthesized by gas reaction at high temperature in the presence of oxygen in ammonia. X-ray diffraction and chemical microanalysis revealed that the nanostructures were Ga2O3 with the monoclinic structure. Electron microscopy study indicated the nanobelts were single crystalline with broad (0 1 0) crystallographic planes. The nanostructures grew anisotropically with the growth direction of . Statistical analysis of the anisotropic morphology of the nanobelts and electron microscopy investigation of the nanobelt tips indicated that both vapor–solid and vapor–liquid–solid mechanisms controlled the growth process. The anisotropic nature of crystallographic morphology is explained in terms of surface energy.  相似文献   

18.
Strong red photoluminescence (PL) spectra appeared at porous silicon (PS) samples prepared by a chemical anodization of Fe-contaminated Si substrates. The Fe1000 sample with Fe contamination of 1000 ppb showed a ten times stronger red PL than that of the reference PS sample without any Fe contamination, and this sample also showed the higher thermal stability for PL spectra as compared with the reference PS sample. Furthermore, the PL intensity from the PS with Fe contamination is linearly proportional to the Fe-related trap concentrations of Si substrates obtained from DLTS. Especially, all the PS samples exhibit the same PL peak position regardless of Fe contamination concentrations, as compared with that of the reference PS. This means that there is no significant effect such as the variation of size distribution of nanocrystalline Si in PS layer formed on Fe-contaminated Si substrate. Based on the results of PL and DLTS, we found that the PL efficiency depends strongly on the Fe-related trap concentration in Si substrates.  相似文献   

19.
20.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号