首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用多步包覆法在自制的240nm的单分散SiO2微球表面进行β-FeOOH的包覆,在5wt%的NaOH溶液中去除核心SiO2后,得到β-FeOOH纳米结构空心微球。将单分散的β-FeOOH空心球作为内核,十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,经水解缩聚反应得到空心核壳复合微球。在空气中焙烧(500℃,5h)对样品去除模板剂,并在还原气氛(5%H2/95%Ar,350℃,3h)下焙烧得到介孔SiO2/Fe3O4中空磁性复合微球。结果表明,所制得的介孔SiO2/Fe3O4中空磁性复合微球中的Fe3O4层厚度约60nm,是由Fe3O4纳米棒搭接而成的三维网络结构,复合微球的整体平均直径为390nm,比表面积较高约693m2·g-1,孔体积为0.63cm3·g-1,平均孔径为3.6nm,其饱和磁化强度可达13.6emu·g-1,同时较低的矫顽力(50Oe)有利于颗粒的再分散。  相似文献   

2.
在0.15mol/LCl-和0.05mol/LSO42-的存在下,通过Fe3 溶液140℃水热反应12h分别得到α-Fe2O3纳米立方体和α-FeOOH纳米棒自组装的微球,将得到的α-FeOOH纳米棒自组装微球经600℃热处理2h后转化为α-Fe2O3纳米棒组装空心微球.利用X射线衍射仪、扫描电子显微镜、透射电子显微镜和红外光谱对所得产物进行表征和分析.结果表明,所制备的单分散的α-Fe2O3纳米立方体为六方单晶结构,其边长为500nm.直径为2~4.5μm的空心微球是由直径约150nm的α-Fe2O3纳米棒组装而成.研究了Cl-和SO42-在纳米立方体和空心微球形成过程中的作用,提出了可能的生长机理.在室温下测试了α-Fe2O3纳米立方体和α-Fe2O3纳米棒自组装微球的磁学特性,其矫顽力和剩余磁化强度分别为2858.3Oe(1Oe=79.58A/m)和0.195emu·g-1(1emu·g-1=15.7914×10-9A·m2·kg-1),218.87Oe和0.071emu·g-1.  相似文献   

3.
在0.15mol/L Clˉ和0.05mol/L SO4^2-的存在下,通过Fe^3+溶液140℃水热反应12h分别得到α—Fe2O3纳米立方体和α-FeOOH纳米棒自组装的微球,将得到的α-FeOOH纳米棒自组装微球经600℃热处理2h后转化为α—Fe2O3纳米棒组装空心微球.利用X射线衍射仪、扫描电子显微镜、透射电子显微镜和红外光谱对所得产物进行表征和分析.结果表明,所制备的单分散的α-Fe2O3纳米立方体为六方单晶结构,其边长为500nm.直径为2~4.5μm的空心微球是由直径约150nm的α-Fe2O3纳米棒组装而成.研究了Clˉ和SO4^2-在纳米立方体和空心微球形成过程中的作用,提出了可能的生长机理.在室温下测试了α-Fe2O3纳米立方体和α-Fe2O3纳米棒自组装微球的磁学特性,其矫顽力和剩余磁化强度分别为2858.3 Oe(1 Oe=79.58 A/m)和0.195emu.g^-1(1 emu.g^-1=15.7914×10^-9 A·m^2·kg^-1),218.87 Oe和0.071 emu.g^-1.  相似文献   

4.
利用St觟ber方法合成了平均粒径在800 nm,球形度、单分散性良好的SiO2微球,再将其作为制备核壳结构SiO2@TiO2颗粒的内核。利用钛酸四丁酯水解反应,在SiO2内核上包覆制备了壳厚在30~100 nm的TiO2壳层,TiO2壳层厚度可根据水解反应中钛酸四丁酯的量调控。将制得的SiO2@TiO2核壳结构颗粒在550℃煅烧1 h,氧化钛壳层的晶型转变为锐钛矿相,晶型转变为锐钛矿相的TiO2更适合作为填料应用于近红外反射涂层。本文合成厚度可控SiO2@TiO2微球的方法是一种改进的溶胶凝胶方法,即在溶胶凝胶方法的基础上增加水热合成工艺。另外,本合成方法工艺简单,无表面活性剂或者耦合剂的引入。  相似文献   

5.
采用一种简单和低成本的方法制备单分散SiO2包覆聚苯乙烯(PS)(PS/SiO2)核-壳型纳米复合微球.首先在聚乙烯吡咯烷酮(PVP)存在下制备了PS纳米微球,然后在NH4OH/乙醇溶液中通过溶胶-凝胶过程在PS微球表面包覆SiO2.PS纳米微球的制备在水介质中进行,无需使用共单体,使用的是常用的过硫酸钾自由基引发剂;包覆处理前不用进行溶剂交换或离心处理.研究了PVP,NH4OH和原硅酸乙酯(TEOS)的用量对PS/SiO2纳米复合微球尺寸和形态的影响.随着PVP用量增加,PS微球变小,因此得到较小的PS/SiO2纳米复合微球;NH4OH用量对SiO2包覆层的厚度没有影响,但对SiO2包覆层的表面形态有影响,随着NH4OH用量增加包覆层表面变得粗糙;随着TEOS溶液用量增加,生成的SiO2增加,其包覆层的厚度增加.  相似文献   

6.
制备方法对模板法制备SiO_2中空微球形貌的影响   总被引:1,自引:0,他引:1  
模板法是制备无机中空微球的重要方法之一.首先通过苯乙烯和甲基丙烯酸的无皂乳液聚合法制得表面含羧基、粒径为360nm的单分散聚苯乙烯(PSt)乳胶粒,并以此为模板,分别采用表面改性-前驱体水解法(PHC)和SiO2纳米颗粒层层自组装法(LBL),制备出了不同壳层厚度的PSt/SiO2核壳结构复合微球,然后经500℃煅烧4h,得到SiO2中空微球.利用透射电镜和扫描电镜对微球结构形态进行了表征.研究表明,首先利用γ-氨丙基三乙氧基硅烷(KH-550)对PSt模板微球进行表面改性、然后再在乙醇-水混合介质中进行原硅酸乙酯(TEOS)水解与缩合反应的PHC法,是制备PSt/SiO2核壳结构复合微球的简便方法,复合微球经煅烧可制得表面均匀、结构致密、壳层厚度和形貌可控的SiO2中空微球;而LBL法制备PSt/SiO2核壳结构复合微球的工艺复杂,煅烧后所得SiO2中空微球结构疏松,易于破碎.  相似文献   

7.
邹华  吴石山  沈健 《化学学报》2009,67(3):266-269
聚乙烯吡咯烷酮(PVP)功能化的聚苯乙烯(PS)粒子在SiO2包覆的同时被乙醇/氨水介质溶解, 得到了单分散空心SiO2纳米微球. 该空心SiO2纳米微球的尺寸和形态可以通过PVP, NH4OH和正硅酸乙酯(TEOS)的用量来调节. PVP用量增加导致PS粒子变小, 从而得到较小的空心SiO2纳米微球; NH4OH用量增加, 空心SiO2纳米微球表面变得粗糙; TEOS用量增加, 空心SiO2纳米微球的壳层厚度增加. 包覆(溶解)温度是控制空心SiO2纳米微球形成的最有效手段. 在70 ℃的包覆(溶解)温度下可以获得全部空心的SiO2纳米微球.  相似文献   

8.
二氧化硅/聚苯乙烯单分散性核/壳复合球的制备   总被引:9,自引:0,他引:9  
采用无皂乳液聚合包覆 ,制备了二氧化硅 聚苯乙烯单分散核 壳 (SiO2 PS)复合颗粒 ,包覆层厚度达到 10 0nm .选择 80~ 2 5 0nm二氧化硅粒径作为核颗粒 .为提高包覆效率 ,二氧化硅颗粒先用偶联剂甲基丙烯酰 (3 三甲氧基硅烷 )丙酯 (MPS)进行不同程度的表面改性 .控制MPS的结合率和单体的初始浓度可提高包覆效率 ,同时得到了单分散性复合颗粒 ,用透射电镜 (TEM)观察复合粒子的核 壳形态 .用动态光散射法 (DLS)测量表明所得复合颗粒具有单分散性 .  相似文献   

9.
超声辐照乳液聚合制备聚丙烯酸正丁酯空心微球   总被引:2,自引:0,他引:2  
利用超声辐照引发包覆乳液聚合制备了聚丙烯酸正丁酯(PBA)空心微球.TEM和DLS结果显示,空心微球粒径均一,壳层厚度均匀.FTIR结果显示,壳-核物质间以物理吸附相结合,没有形成化学键.同时,利用TEM和DLS研究了空心微球的形成机理,阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)在CMC浓度以下首先吸附在纳米SiO2粒子表面形成双层结构,然后丙烯酸正丁酯(BA)单体增溶进入CTAB层间,在超声辐照引发、分散作用下包覆聚合形成均一的PBA-SiO2壳-核粒子,再利用HF溶液去除无机核,得到PBA空心微球.  相似文献   

10.
首先采用无皂乳液聚合法合成了表面带负电荷、粒径为360nm的单分散聚苯乙烯(PSt)种子乳液,并以EtOH/H2O混合物为分散介质,利用γ-氨丙基三乙氧基硅烷(KH-550)在25℃下对PSt微球表面进行改性,得到了表面硅烷化并带有正电荷的改性PSt种子乳液,然后在碱性条件下加入原硅酸乙酯(TEOS)使其和微球进行共水解与共缩聚,制备出了核壳结构PSt/SiO2复合微球,并利用电镜对复合微球的结构形态进行了表征.研究表明,PSt种子乳液改性时体系的zeta电位随着KH-550用量的增加而升高,当KH-550用量为PSt种子重量的1/3时,体系的zeta电位从原来的-34.5mV升高到了38mV,达到对PSt微球表面改性的最佳值;在制备PSt/SiO2复合微球时,TEOS水解缩聚形成的SiO2包覆到改性微球上的量随着反应时间的延长而增加,反应24h时达到97.9%的最大值;随介质中水含量的增加,吸附到复合微球表面上的SiO2纳米颗粒逐渐减少,复合微球表面逐渐变得光滑,当EtOH/H2O质量比降低到60/28.5时,得到结构均一、壳层厚度为35nm的核壳结构PSt/SiO2复合微球。  相似文献   

11.
首先用聚乙烯亚胺(PEI)对粒径为360 nm的单分散无皂聚苯乙烯(PSt)乳胶粒进行修饰,得到表面荷正电的PSt种子乳液,然后将其滴加到溶有钛酸正丁酯(TBT)的乙醇与水的混合介质中,通过溶胶-凝胶(sol-gel)法制备出了核壳结构PSt/TiO2复合微球,系统研究了体系pH和TBT用量对复合微球结构形态的影响.研究表明,酸性条件不利于核壳结构PSt/TiO2复合微球的形成;当体系pH值为7.2时,可得到包覆完整、TiO2壳层厚度均一的PSt/TiO2复合微球,此后随着体系pH值的升高,包覆厚度逐渐提高;当pH值升高到11.0时,壳层厚度达到最大,但出现了包覆层不完整的复合微球.在固定聚合体系pH为8.5,EtOH/H2O质量比为100/6,表面修饰PSt种子乳液用量为0.5 g(固含量为4%)的条件下,随着TBT用量从0.01 g增加到0.16 g,复合微球壳层厚度从约0 nm逐渐增加到60 nm;当TBT用量增加到0.32 g时,壳层厚度迅速降至12nm,微球表面变得粗糙,并出现大量未包覆微粒;此后随着TBT用量的增加,包覆层厚度逐渐减少,未包覆微球逐渐增多.结果显示,当复合微球中TiO2包覆层达到一定厚度时,经煅烧后才能得到形貌完整的TiO2中空微球.  相似文献   

12.
采用振荡法和种子生长技术制备出核壳结构的Au@SiO2纳米颗粒及夹层结构的Au@SiO2@Ag纳米颗粒, 用HF将Au@SiO2@Ag NPs夹层的SiO2溶解, 得到内部带有粒径为30 nm的可移动金核、壳层厚度约为30 nm的中空银纳米颗粒(Au@air@Ag NPs). 用扫描电子显微镜和透射电子显微镜对所得到的纳米微球的形貌进行了表征, 并以罗丹明B为探针分子研究了Au@air@Ag 纳米颗粒的表面增强拉曼(SERS)效应, 发现Au@air@Ag 纳米颗粒是一种可应用于SERS的理想材料.  相似文献   

13.
通过溶胶-凝胶法,制备了银/二氧化硅核壳材料(Ag@SiO2),对SiO2壳层厚度进行了有效调控,并系统研究了壳层厚度对银的等离子体共振峰(LSPR)以及对折射率灵敏度(RIS)的影响。研究结果表明,随SiO2壳层包覆厚度的增加,银纳米颗粒的LSPR吸收峰呈现先红移后蓝移的规律。对于粒径为50 nm的银纳米颗粒,当SiO2壳层达到65 nm时,LSPR最大吸收波长为465 nm。进一步增加SiO2壳层厚度,LSPR发生蓝移并且强度变弱,当SiO2壳层达到120 nm时,LSPR吸收峰已无法清晰辨认。研究了Ag@SiO2材料的RIS效应,发现随着SiO2厚度的增大RIS效应逐渐变小。  相似文献   

14.
以柠檬酸三钠作辅助剂,用多元醇溶剂热还原法制备了纳米晶粒和微球直径可控的、单分散的超顺磁Fe3O4亚微球.发现与铁原子有强亲和力的柠檬酸根能有效吸附在还原产生的初始Fe3O4纳米粒子表面,阻碍其晶粒生长和影响其静电排斥力的大小,从而能在较大范围内调控最终产物Fe3O4亚微球的直径和饱和磁化强度.改变柠檬酸根或铁盐浓度不但可以调控初始Fe3O4纳米粒子的粒径,而且可以在220-550nm范围内调控单分散Fe3O4亚微球的直径,从而得到粒径均一的超顺磁Fe3O4亚微球.  相似文献   

15.
提出一种在悬浮液气-液界面漂浮组装亚微米单分散聚苯乙烯(PS)微球和纳米SiO2颗粒二元胶粒晶体的新方法, 并系统研究了漂浮组装机理. 研究表明, 聚苯乙烯微球和二氧化硅两种胶体颗粒在悬浮液气-液界面的漂浮组装是以PS微球的组装为主导的. 在一定PS微球相浓度范围内, 悬浮液中PS 微球与SiO2颗粒的初始体积配比基本不影响PS微球有序组装的形成. PS微球粒径在150-500 nm时易于形成有序排列, 较小或较大粒径的PS微球难以形成有序排列. SiO2颗粒的组装是一种以PS微球为“基底”的沉积过程. 二元胶粒晶体中SiO2颗粒的体积分数由其在混合悬浮液中的相浓度所决定.  相似文献   

16.
通过溶胶-凝胶法,利用硅烷偶联剂(KH550)对纳米SiO2颗粒进行原位改性,使其表面带正电。改性后的SiO2颗粒(MSiO2)通过静电作用吸附带负电的透明质酸(HA)形成核壳颗粒(HA-MSiO2)。进一步在壳层HA链上接枝聚合N-异丙基丙烯酰胺(NIPAM)制得核壳结构温敏性杂化微凝胶(PNIPAM-HA-MSiO2),并用AFM和SEM表征其在云母表面的成膜性能。结果表明:HA-MSiO2核壳颗粒平均粒径约为182 nm,壳层厚度15 nm,其粒径或壳层厚度可以通过改变MSiO2溶液或HA溶液的浓度来调节;温敏性PNIPAM-HA-MSiO2微凝胶的体积相变温度为32°C,与PNIPAM溶液的最低临界溶解温度(LCST)一致,在体积相变温度以下旋涂于云母表面的微凝胶呈现球形颗粒,体积相变温度以上旋涂膜可以转变为致密的膜。  相似文献   

17.
用改进的Stöber法和无皂乳液聚合法制备窄分布的二氧化硅/PMMA核-壳纳米微球. 用改进的Stöber法将3-乙氧基甲基丙烯酸丙基硅烷(MPS)修饰在纳米的二氧化硅表面后, 用无皂乳液聚合法制备核-壳纳米微球. 该法简单有效且得到厚度均匀的聚合物包覆层. 随着单体MMA用量的增加, 用动态光散射法测量, PMMA壳层的厚度从6.4 nm增加到96.3 nm. 热重分析表明, PMMA的含量从22.25%增加到93.41%. 扫描电子显微镜和透射电子显微镜结果表明, 得到的是包覆良好、表面光滑的核-壳无机/聚合物纳米微球.  相似文献   

18.
采用均相沉淀法制备了Ag@SiO2@(Y,RE)(OH)CO3.H2O(RE=Eu,Tb)核壳结构微球,经过700℃焙烧后成功制备出Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)核壳结构发光材料。XRD谱图表明Ag核具有结晶良好的面心立方结构;SiO2层为无定型;Y2O3层为立方晶系。FTIR谱图表明核壳之间以化学键相结合。TEM照片表明合成了核壳结构的表面光滑的复合微球,分散良好,大小均匀,Ag核的粒径分布为50±20 nm;SiO2层的厚度为20~30 nm;Y2O3:RE3+(RE=Eu,Tb)层厚度约为125 nm。电子衍射图像表明Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)为多晶结构。UV-Vis光谱表明表面包覆使Ag离子的等离子体共振吸收峰发生了红移。荧光光谱表明Ag@SiO2@Y2O3:Eu3+具有Eu3+的特征红光发射,Ag@SiO2@Y2O3:Tb3+具有Tb3+的特征绿光发射,但是发光强度均比纯的Y2O3:RE3+有所减弱,说明贵金属的引入对稀土Y2O3:RE3+(RE=Eu,Tb)的发光起到了荧光猝灭的作用。  相似文献   

19.
通过水热合成法制备了单分散碳微球, 并以此单分散碳微球为核, 利用其表面修饰的银纳米粒子作为种子, 进一步还原制备了以碳微球为核、以金为壳的金纳米壳(Nanoshell)球体. 通过透射电子显微镜和紫外可见吸收光谱对其形态以及光谱性质进行了表征. 研究结果表明, 采用该种方法制备出来的碳微球具有良好的单分散性, 表面修饰简便快捷, 利用碳微球为核制备的金纳米壳球体尺寸可控, 在近红外范围内有强吸收. 实验结果证明该方法是制备金纳米壳球体的一种有效新方法.  相似文献   

20.
采用溶胶-凝胶法制备了核-壳介孔SiO2微球,分别利用透射电镜和拉曼光谱对该微球的超微结构进行了观察及光谱分析。结果表明:制备的核-壳介孔SiO2微球是由外表面孔径为7nm、厚度30nm的有序介孔SiO2壳层,包裹着核直径为200nm的实心SiO2微球所组成,介孔壳层具有较大的比表面积,具有良好的光谱性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号