首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A ternary salt system Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 was studied in the subsolidus area by X-ray phase analysis. A novel ternary molybdate, Rb4.98Eu0.86Hf1.11(MoO4)6, formed in the system. The Rb4.98Eu0.86Hf1.11(MoO4)6 rubidium-europium-hafnium molybdate crystals were grown by solution-melt crystallization under the spontaneous nucleation conditions. The structure and composition of this compound were refined by single crystal X-ray diffraction (X8 APEX automated diffractometer, MoK α radiation, 1753 F(hkl), R = 0.0183). The crystals are trigonal, a = b = 10.7264(1) Å, c = 38.6130(8) Å, V = 3847.44(9) Å3, Z = 6, space group R \(\bar 3\) c. The three-dimensional mixed framework of the structure comprises Mo tetrahedra and two types of octahedra, (Eu,Hf)O6 and HfO6. The large cavities of the framework include two types of the rubidium atom. The distribution of the Eu3+ and Hf4+ cations over two crystallographic positions was refined.  相似文献   

2.
The Tl2MoO4-Ln2(MoO4)3-Hf(MoO4)2 systems where Ln = La-Lu were studied in the subsolidus region using X-ray powder diffraction. Quasi-binary joins were revealed, and triangulation carried out. New ternary molybdates were prepared: Tl5LnHf(MoO4)6 (5: 1: 2) for Ln = Ce-Ho, Tl5LnHf(MoO4)6 (5: 1: 2) for Ln = Er-Lu, TlLnHf0.5(MoO4)3 (1: 1: 1) for Ln = Ce-Nd, and Tl2LnHf2(MoO4)6.5 (2: 1: 4) for Ln = Ce-Lu. The crystallographic parameters of Tl5LnHf(MoO4)6 (5: 1: 2) compounds for Ln = Er-Lu were determined.  相似文献   

3.
4.
Glass formation boundaries in the Al2(SO4)3-Al(NO3)3-H2O system were determined. IR spectra were studied. Schemes of structural rearrangements within the boundaries of a second glass formation region in the Al(NO3)3-H2O binary subsystem are suggested. A structure is suggested for glassy Al(NO3)3H2O.  相似文献   

5.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

6.
The compound [Ni(NH3)6][VO(O2)2(NH3)]2 was prepared and characterized by elemental analysis and vibrational spectra. The single crystal X-ray study revealed that the structure consists of [Ni(NH3)6]2+ and [VO(O2)2(NH3)] ions. As a result of weak interionic interactions V′···Op (Op-peroxo oxygen), ([VO(O2)2(NH3)])2 dimers are formed in the solid-state. The thermal decomposition of [Ni(NH3)6][VO(O2)2(NH3)]2 is a multi-step process with overlapped individual steps; no defined intermediates were obtained. The final solid products of thermal decomposition up to 600°C were Ni2V2O7 and V2O5.  相似文献   

7.
Powder and single crystal X-ray diffraction studies have been performed for anhydrous nitrate complexes Rb2[Pd(NO3)4] (I) and Cs2[Pd(NO3)4] (II). Crystal data for I: a = 7.843(1) Å, b = 7.970(1) Å, c = 9.725(1) Å; β = 100.39(1)°, V = 597.9(1) Å 3, space group P21/c, Z = 2, d calc = 2.918 g/cm3; for II: a = 10.309(2) Å, b = 10.426(2) Å, c = 11.839(2) Å; β = 108.17(3)°, V = 1209.0(4) Å3, space group P21/c, Z = 4, d calc = 3.408 g/cm3. The structures are formed by isolated [Pd(NO3)4]2? complex anions and alkali metal cations. The plane-square environment of the Pd atom is formed from the oxygen atoms of the monodentate nitrate groups. The geometrical characteristics of the complex anions are analyzed. Compound II has a short contact Pd...Cs 3.252 Å.  相似文献   

8.
Thermal decomposition of [Cd(NH3)6](NO3)2 was studied by thermogravimetry (TG) with simultaneous differential thermal analysis (SDTA) for two samples and at two different sets of measurement parameters. The gaseous products of the decomposition were on-line identified by evolved gas analysis (EGA) with a quadruple mass spectrometer (QMS). The decomposition of the title compound proceeds, for both cases, in the three main stages. In the first stage, deammination of [Cd(NH3)6](NO3)2 to [Cd(NH3)](NO3)2 undergoes by three steps and 5/6 of all NH3 molecules are liberated. At second stage the liberation of residual 1/6NH3 molecules and the formation of Cd(NO3)2 undergoes. However, during this process simultaneously a two-step oxidation of a part of ammonia molecules also takes place. In a first step as a result a mixture of ammonia, water vapour and nitrogen is formatted. At the second step, subsequent oxidation of a next part of NH3 molecules undergoes. As a result, a mixture of nitrogen oxide, nitrogen and water vapour is formatted, what for these both steps clearly indicates the EGA analysis. The third stage of the thermal decomposition is connected with the melting and subsequent decomposition of residual Cd(NO3)2 to oxygen, nitrogen dioxide and solid CdO. Additionally, third sample was measured by differential scanning calorimetry (DSC) and the results are fully consistent with those obtained by TG.  相似文献   

9.
By single crystal X-ray analysis, the atomic structure of the crystals of [Eu(NO3)3(HMPA)3] complex (HMPA is hexamethylphosphorotriamide) possessing intense triboluminescence is determined. Symmetry of centrosymmetrical crystals is monoclinic: a = 13.785(1) Å, b = 19.746(2) Å, c = 14.723(1) Å, β= 102.143(2)°, P21/n space group, Z = 4, d x = 1.484 g/cm3. The crystal structure is represented by separate C18H54EuN12O12P3 complexes linked by van der Waals interactions with pronounced cleavage planes. The coordination polyhedron of Eu(III) atom reflects the state of distorted square antiprism. The possible causes of spectral differences in the Stark structure of photo- and triboluminescence are discussed.  相似文献   

10.
11.
The low-temperature heat capacity of Ln2(MoO4)3 (Ln = La, Sm, and Gd) is investigated by means of adiabatic calorimetry within the range of 60–300 K. The temperature dependences of the heat capacity are found and the values of the standard entropy are calculated, based on extrapolations to 0 K. Characteristic temperatures for molybdates are determined from the results of IR spectroscopic studies. The high-temperature enthalpy of Ln2(MoO4)3 (Ln = Eu, Dy, and Ho) is measured via high-temperature microcalorimetry, and the temperature dependence of heat capacity is calculated in the range of 298–1000 K. Since samarium and gadolinium molybdates are of the same structural type as terbium molybdate, we can estimate the anomaly of the heat capacity in the low-temperature region using the data for terbium molybdate and find the entropy of samarium and gadolinium molybdates.  相似文献   

12.
The complex [Co(2-Me-Pyz)2(H2O)4](NO3)2 is synthesized and its structure is determined. The crystals are monoclinic: space group P21/n, a = 10.685(2) Å, b = 6.837(1), c = 12.515(3) Å, β = 91.84(3)°, V = 913.8(3) Å3, ρcalcd = 1.042 g/cm 3, Z = 2. The Co2+ ion (in the inversion center) is coordinated at the vertices of the distorted octahedron by two nitrogen atoms of methylpyrazine and four oxygen atoms of the water molecules (Co(1)–N(1) 2.180(3), average Co(1)–O(w) 2.079(3) Å, angles at the Co atom 87.9(1)–92.1(1)°). Supramolecular pseudometallocycles are formed in the structure through the O(w)–H…N(1) hydrogen bonds between the coordinated H2O molecules and the terminal nitrogen atoms of the 2-methylpyrazine molecules. Their interaction results in the formation of supramolecular layers joined by the NO3 groups into a three-dimensional framework.  相似文献   

13.
Ammonium trinitratouranylate NH4[UO2(NO3)3] (I) single crystals have been synthesized by the reaction of aqueous solutions of diaquadinitratouranyl tetrahydrate and ammonium nitrate in the presence of nitric acid. The structure of the complex has been studied by X-ray diffraction analysis: space group \(R\bar 3c\), a = 9.361(2), c = 18.883(4) Å; V = 1433.0(5) Å3, and Z = 6. The structural units of the NH4[UO2(NO3)3] crystal—NH 4 + cations and [UO2(NO3)3]? complex anions with three bidentate cyclic nitrato groups—are on crystallographic axes \(\bar 3\). A complex three-dimensional packing arranged by the electrostatic attraction forces between counterions and the N-H...O hydrogen bonds between ammonium cations and trinitratouranylate anions is realized in the structure. X-ray diffraction analysis results are confirmed by IR spectra of NH4[UO2(NO3)3].  相似文献   

14.
Based on the corrected phase diagrams proper growth conditions for Li2Zn2(MoO4)3 crystals are selected. Large crystals (up to 100 mm), both impurity-free and activated by transition metal ions (Cu, Cr), are grown by the low-gradient Czochralski method. By the EPR method the charge state and structural position of copper and chromium ions are determined. The performed studies of luminescent properties show that for impurity-free crystals luminescence with λ = 388 nm with a two-exponential luminescence decay with τ1 = 2 ns and τ2 = 6 ns is observed at room temperature. At 77 K for both impurity-free crystals and those activated with transition metal ions luminescence with λ = 560 nm and the luminescence lifetime τ = 100 ns is observed, the intensity of luminescence with λ = 560 nm depending on the nature and concentration of transition metal ions. Cation vacancies responsible for the charge compensation of impurity transition metal ions are assumed to be also responsible for low-temperature luminescence.  相似文献   

15.
The LiCl-LiNO3-KCl-Sr(NO3)2 four-component system was studied for the first time by a complex of physicochemical analysis methods, including differential thermal analysis, X-ray diffraction, visual-polythermal, and projection thermographic methods. Eutectic and peritectic invariant point characteristics were determined, and the phase diagram of the system was constructed.  相似文献   

16.
17.
Phase relationships in the subsolidus region of the system Na2MoO4-MnMoO4-Cr2(MoO4)3 were studied by means of X-ray diffraction and differential-thermal analyses. The possibility of obtaining a variablecomposition phase Na1?x Mn1?x Cr1+x (MoO4)3 (0 ≤ x ≤ 0.5) and ternary molybdate NaMn3Cr(MoO4)5 was examined. The temperature dependence of the conductivity of the phase Na1?x Mn1?x Cr1+x (MoO4)3 was analyzed.  相似文献   

18.
Solubilities and solid phases in the system Mn(NO3)2-HCONH2-H2O were studied by an isothermal method at 25°C. The congruently saturating compound Mn(NO3)2 · 2HCONH2 · 2H2O was isolated; the concentration conditions for its crystallization in the system were determined. The solid phases of the system were characterized by physicochemical methods (X-ray powder diffraction, differential thermal analysis, IR spectroscopy, and crystal-optical analysis).  相似文献   

19.
Polymorphism and thermal decomposition of [Mg(DMSO)6](NO3)2, where DMSO =(CH3)2SO, were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). The gaseous products of the decomposition were on-line identified by a quadruple mass spectrometer (QMS). Three phase transitions have been detected for this compound in the temperature range of 95–370 K between the following solid phases: stable KIb↔stable KIa at T C3=195 K, metastable KII↔supercooled K0 at T C2=230 K and stable KIa→stable K0 at T C1=337 K. Thermal decomposition of the title compound proceeds in three main stages. In the first stage, which starts just above ca. 380 K, and is continued up to ca. 540 K, the compound loses in two steps four DMSO molecules per one formula unit and undergoes into [Mg(DMSO)2](NO3)2. The second stage starts just immediately after liberating four DMSO ligands and is connected with the decomposition of [Mg(DMSO)2](NO3)2 and the formation of a mixture of solid anhydrous magnesium sulfate, magnesium nitrate and magnesium oxide and also a mixture of gaseous products of the DMSO and Mg(NO3)2 decomposition. The third and the last stage corresponds to the decomposition of not decomposed yet magnesium nitrate and formation of magnesium oxide, nitrogen oxides and oxygen.  相似文献   

20.
The crystal structures of two polymorphs of molybdenyl salicylidene-2-furfuryliminate [MoO2(L1)2] have been solved by X-ray diffraction. Both complexes crystallize in centrosymmetric and non-centrosymmetric space groups (P21/c and Р21, respectively) of monoclinic system and have similar structures and close geometric parameters. The Мо atoms have a distorted octahedral coordination to two terminal oxo ligands in cis-positions to each other and two pairs of the oxygen atoms (cis- to О(oxo)) and the nitrogen atoms (trans- to О(oxo)) of two bidentate chelate ligands (L1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号