首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermooxidative decomposition of four oil shale samples from Estonia, Jordan, Israel and Morocco and one sample of Estonian oil shale derivative, semicoke, was studied with the aim to determine the characteristics of the process and the differences of it related to the origin of oil shale. The experiments with a Setaram Setsys 1750 thermoanalyzer coupled to a Nicolet 380 FTIR Spectrometer were carried out under non-isothermal conditions up to 1000 °C at the heating rates of 1, 2, 5, 10 and 20 °C min−1 in an oxidizing atmosphere. A model-free kinetic analysis approach based on the differential isoconversional method of Friedman was used to calculate the kinetic parameters. The results of TG–DTA–FTIR analyses and the variation of activation energy E along the reaction progress α indicated the complex character of thermooxidative decomposition of oil shale and semicoke, being at that the most complicated for Estonian and Jordanian oil shale characterized by higher content of organic matter as compared to the other samples studied.  相似文献   

2.
A free-base tetraphenyl porphyrin (TPP) and its corresponding metalloporphyrins (MTPP) where M = Co, Fe and Sn were synthesized and characterized by UV–visible spectroscopy, FTIR and 1Hnmr spectroscopy. Thermal studies of these porphyrins were carried out in synthetic air from room temperature to 800 °C using thermal analyser. The residues of MTPP after thermal treatment were qualitatively analysed, which showed the presence of corresponding metal oxides. Further, the above MTPP were subjected to thermogravimetry–evolved gas and mass spectrometry (TG–EGA–MS) analysis for the detailed information about evolved gases at their corresponding decomposition temperatures. This information may be used to predict the probable mechanism for ring opening of the macromolecular porphyrins.  相似文献   

3.
The pyrolysis characteristics and kinetics of sewage sludge for different sizes (d < 0.25 mm, 0.25 mm < d < 0.83 mm, and d > 0.83 mm) and heating rates (5, 20, and 35 °C/min) were investigated in this article. The STA 409 was utilized for the sewage sludge thermogravimetric analysis. FTIR analysis was employed to study the functional groups and intermediates during the process of pyrolysis. Meanwhile, a new method was developed to calculate pyrolysis kinetic parameters (activated energy E, the frequency factor A, and reaction order n) with surface fitting tool in software MATLAB. The results show that all the TG curves are divided into three stages: evaporation temperature range (180–220 °C), main decomposition temperature range (220–650 °C), and final decomposition temperature range (650–780 °C). The sewage sludge of d < 0.25 mm obtains the largest total mass loss, especially at the heating rate of 5 °C/min. By FTIR analysis, the functional groups including NH, C–H, C=C, etc., are all found in the sewage sludge. There is a comparison between the FTIR spectra of sludge heated to 350 °C (temperature associated to maximum devolatilization rate in the second stage) and the FTIR spectra of sludge heated to 730 °C (temperature associated to maximum devolatilization rate in the third stage). In the second stage, the alcohols, ammonia, and carboxylic acid in the sludge have been mostly decomposed into gases, and only a little bit of compounds containing CH and OH of COOH exist. The pyrolysis kinetic parameters of second stage are as follows: the reaction orders are in the range of 1.6–1.8 and the activation energy is about 45 kJ/mol. The frequency factor increases with the increase of heating rate and sewage sludge size.  相似文献   

4.
Thermal and structural properties of three clays (sepiolite and two kaolinites) from Turkey were studied by thermal analysis (TG–DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared (FT-IR), and surface area measurement techniques The adsorption of sulfur dioxide (SO2) gas by these clays was also investigated. SO2 adsorption values of K1, K2, and S clay samples were measured at 20 °C and pressures up to 106 kPa. Sepiolite sample (S) primarily consists of pure sepiolite, only dolomite present as accompanying mineral. Both kaolinite samples, K1 and K2, mainly contain kaolinite as the major clay mineral and quartz as impurity. In K2 sample, muscovite phase is also present. Simultaneous TG–DTA curves of all clay samples were obtained at three different heating rates 10, 15, and 20 °C min−1 over the temperature range 30–1200 °C. It was found that the retention value of SO2 by S clay (2.744 mmol/g) was higher than those of K1 (0.144 mmol/g) and K2 (0.164 mmol/g) samples.  相似文献   

5.
The pyrolysis behavior of bitumen was investigated using a thermogravimetric analyzer–mass spectrometer system (TG–MS) and a differential scanning calorimeter (DSC) as well as a pyrolysis-gas chromatograph/mass spectrometer system (Py-GC/MS). TG results showed that there were three stages of weight loss during pyrolysis—less than 110, 110–380, and 380–600 °C. Using distributed activation energy model, the average activation energy of the thermal decomposition of bitumen was calculated at 79 kJ mol−1. The evolved gas from the pyrolysis showed that organic species, such as alkane and alkene fragments had a peak maximum temperature of 130 and 480 °C, respectively. Benzene, toluene, and styrene released at 100 and 420 °C. Most of the inorganic compounds, such as H2, H2S, COS, and SO2, released at about 380 °C while the CO2 had the maximum temperature peaks at 400 and 540 °C, respectively. FTIR spectra were taken of the residues of the different stages, and the results showed that the C–H bond intensity decreased dramatically at 380 °C. Py-GC/MS confirmed the composition of the evolved gas. The DSC revealed the endothermic nature of the bitumen pyrolysis.  相似文献   

6.
A single crystal of cinnamic acid–urea was grown by slow evaporation of methanol solution at room temperature. In this research, many analytical methods such as FTIR, second harmonic generation, NMR, and TG–DTA were used. The presence of title compound in the crystal lattice has been qualitatively determined by FTIR analysis. Thermal stability of the grown crystals was evaluated by TG-DTA. Incorporation of urea increases the thermal stability insuring the suitability of material for possible non-linear optical application up to 180 °C.  相似文献   

7.
The thermal behavior of the anticancer drug-irinotecan was measured by Thermogravimetry–Differential thermal analysis (TG–DTA) to explore the application of TG–DTA in nanomedicine firstly. The TG–DTA result showed that the irinotecan was oxidized completely before 700 °C. When irinotecan was loaded onto nanosized mesoporous silica spheres, the loading capacity for irinotecan measured by TG–DTA was about 9.11% in the irinotecan/mesoporous SiO2 composite, similar to the typical UV–Vis spectra results (10.5%), which showed that TG–DTA characterization provided an alternative method to determine the drug loading amount on inorganic carriers. Secondly, Thermogravimetry–Differential scanning calorimetry–Mass Spectrometry coupling techniques (TG–DSC–MS) were used to characterize the hydrogen adsorption temperature and capacity of TiCr1.2 (V-Fe)0.6 alloy. The MS result showed that the released region of hydrogen was 250–500 °C, which was consistent with the TG–DSC results. Lastly, TA–MS combined with pulse thermal analysis (PulseTA) were used for a simultaneous characterizing study in the changes of mass, determination and quantitative calibration of the evolved nitrogen formed during the thermal decomposition of the InN powder. The results showed that relative error of this method between measured value and theoretical value was 2.67% for the quantitative calibration of evolved N2. It shows that TA–MS combined with PulseTA techniques offer a good tool for the quantification of the evolved nitrogen in the InN powder.  相似文献   

8.
The aim of this study is to employ a thermogravimetric analyzer coupled to a mass spectrometer to research into the influence of heating rate and sample mass on the response of the detector. That response is examined by means of a particular efflorescence taken from an acid mine drainage environment. This mixture of weathered products is mainly composed by secondary sulfate minerals, which are formed in evaporation conditions, appearing as efflorescence salts. Thermogravimetry coupled to mass spectrometry has been used to analyze the three main loss steps that happen when this combination of minerals is heated from 30 to 1,100 °C. This inorganic material is based on a mixture of hexahydrite, zinc sulfate hexahydrate, apjonite, gypsum, plumbojarosite, calcite, quartz, and magnetite. While heating, three main effluent gases evolved from this efflorescence. At a standard heating rate of 10 °C/min, loss of water (dehydration) occurred over 30–500 °C in four major steps, loss of carbon dioxide (decarbonisation) occurred over 200–800 °C in three steps, and loss of sulfur trioxide (desulfation) occurred over 400–1,100 °C in three steps. According to the results, thermal analysis is an excellent technique for the study of decomposition in these systems.  相似文献   

9.
The article is devoted to the study on the thermal behaviour of three species of edible mushrooms: Boletus edulis (foot and cap), Pleurotus ostreatus (foot and cap), Lactarius deterrimus (cap) by the TG–FTIR-coupled technique, in air, over the 30–900 °C temperature range. The analysis of the TG–DTG–DTA curves reveals the thermal degradation mechanism to be complex and specific to every species under the recording conditions applied. A similar degradation mechanism is noticed for the foot and cap of Pleurotus ostreatus in comparison with the Boletus edulis and Lactarius deterrimus species where the mechanisms are different. The TG–FTIR analysis, combustion heats and IR spectra of the starting samples also support these results. The initial degradation temperatures from TG–DTG indicate the temperature range where these species are thermally stable and their nutrient features maintained making them proper for food. The TG–FTIR analysis gives information on the gaseous species evolved by the thermal degradation bringing thus a contribution to the elucidation of the changes developing by processing the edible mushrooms (industrialization, conservation, culinary preparations, etc.) at temperatures above the initial degradation temperature. At the same time, the environmental impact, when the mushroom failed cultures are burned, is also important.  相似文献   

10.
Mixed crystals of various proportions of urea thiourea were grown by slow evaporation of aqueous solution at room temperature. The bright and transparent crystals obtained were characterized using thermogravimetry–differential thermal analysis (TG–DTA) and FTIR spectroscopic analyses. A fitting decomposition pattern for the title compound was formulated on the TG curve which shows a two-stage mass loss between 175 and 750 °C. In this temperature range, DTA curves show exothermic peaks supporting the formulated decomposition pattern. The FTIR spectra show the characteristic absorption, vibration frequencies due to urea thiourea. Detailed structural analysis of the compound is under progress.  相似文献   

11.
Thiourea Urea Zinc (II) Chloride (TUZC), a new semiorganic non-linear optical material has been synthesized. The solubility studies have been carried out at room temperature. Single crystals of different proportions of TUZC have been grown by slow evaporation of saturated aqueous solution at room temperature. The FTIR and UV spectral bands have been compared with urea, thiourea and bis Thiourea Zinc Chloride (BTZC). The TG curve showed a two steps mass loss on heating the compound between 30 and 800 °C corresponding to two exothermic DTA peaks at 181–183 and 250–252 oC.  相似文献   

12.
Lithium aluminum silicate powders in the form of β-spodumene were synthesized through sol–gel technique by mixing boehmite sol, silica sol and lithium salt. The gel and oxide powders were characterized by thermogravimetry, differential thermal analysis (DTA), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and scanning electron microscopy. DTA, XRD and FTIR results confirmed that crystallization of β-spodumene took place at about 800 °C. The tiny crystallites with average size less than 1 μm appeared when the gel powders were sintered at 800 °C. A substantial increase of the crystal grain size was observed with increasing sintering temperatures.  相似文献   

13.
The present work is focused on thermoanalytical investigations as thermogravimetric analysis (TG) and derivative thermal analysis (DTG), applied for the characterization of some samples collected from archaeological sites (Brasov and Trofeum Traiani) located in different regions of Romania. New informations derived about ceramic technologies concerning raw materials and binding materials (mineralogical components) have been obtained. All these experimental results have been correlated with related techniques as X-ray diffraction (XRD), energy-dispersive X-ray fluorescence (EDXRF) and inductively coupled plasma—atomic emission spectrometry (ICP-AES). By progressive heating in static air atmosphere and in the temperature range of 20–800 °C, all investigated materials exhibit three main successive processes, associated with the dehydration and thermo-oxidative degradations. The rate of the first thermooxidative process, temperatures corresponding to the maximum rate of the second thermooxidative process and shrinkage temperature were associated with the damage of the investigated materials due to environmental impact. Heating also affects the contact between the fine-sized clay matrix and mineral clast fragments, appearing in reaction rims, sometimes showing newly formed phases. The temperature at which ancient ceramics and pottery were fired varies over a wide range (600–800 °C) depending on the type of clay used, although firing temperatures not above 30–400 °C have also been suggested. Clay minerals, as the main material for production of ceramics and pottery, show some characteristic reactions (dehydroxylation, decomposition, transformation) in the course of firing (heating effects) and several thermoanalytical criteria can be used for reconstruction of former production conditions.  相似文献   

14.
Thermal decomposition of an agrowaste, namely banana trunk fibers (BTF) were investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG) up to 900 °C at different heating rates (from 5 to 100 °C/min). The BTF was subjected to modification by means of various known chemical methods (mercerization, acetylation, peroxide treatment, esterification, and sulfuric acid treatment). Various degradation models, such as the Kissinger, Friedman, and Flynn–Wall–Ozawa were used to determine the apparent activation energy. The obtained apparent activation energy values (149–210 kJ/mol) allow in developing a simplified approach to understand the thermal decomposition behavior of natural fibers as a function of polymer composite processing.  相似文献   

15.
This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO) n ] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.  相似文献   

16.
This paper reviews selected aspects of research work carried out in bioceramics and bioceramic composites at the Ceramics Laboratory IIT, Bombay, India. The focus here is in understanding and developing calcium hydroxyapatite (HA) bioceramics and biocomposites, including calcium hydroxyapatite-titanium (HA-Ti) and calcium hydroxyapatite-polymethylmethacrylate (HA-PMMA). Research involving apatite-wollastonite (AW) bioglass ceramics and bioceramic composites of AW with titanium as well as with polymethylmethacrylate will be presented in a future article. HA powders were precipitated from solutions with varying Ca/P ratios and calcined at a range of temperatures to investigate their structural evolution. HA-Ti composites were prepared by powder metallurgical processes using HA powders calcined at 400 °C, followed by compaction at 600 MPa and subsequent sintering at 1,000–1,200 °C. HA-PMMA composites containing up to 40 wt% PMMA were prepared by hot pressing at 150 °C and 150 MPa pressure. The phases present in the various materials were identified by X-ray diffraction (XRD) and functional groups by FTIR, while the sample morphologies were investigated by SEM. The bioactivity of the composites was evaluated by soaking them in simulated body fluid (SBF) for 7 days, to evaluate their apatite-forming ability (a key indicator of bioactivity). The results obtained are interpreted to aid in the development of “design rules” for the use of such biocomposite materials in specific biomedical application.  相似文献   

17.
Coupled TG-FTIR technique was used for identification of gaseous compounds evolved at thermal treatment of six coal samples from different deposits (Bulgaria, Russia, Ukraine). The experiments were carried out under dynamic heating conditions up to 900°C at heating rates of 5, 10 or 50 K min–1 in a stream of dry air. The emission of CO2, H2O, CO, SO2, COS, methane, methanol, formic acid, formaldehyde, acetaldehyde, chlorobenzene was clearly identified in FTIR spectra of the samples studied. The formation of ethanol, ethane, ethylene and p-xylene, at least on the level of traces, was also identified. At the heating rate of 5°C min–1 the temperature of maximum intensities of the characteristic peaks of COS was 270°C, of formaldehyde, formic acid, ethane and methanol 330°C, of SO2, CO, acetic acid, ethylene and p-xylene 400°C and of chlorobenzene 500°C. At 10°C min–1 and 50°C min–1 these temperatures were shifted, respectively, by 70–300°C and 150–450°C towards higher temperatures and the respective absorption bands in FTIR spectra were, as a rule, more intensive.  相似文献   

18.
The thermal stability of two kinds of dextran-coated magnetite (dextran with molecular weight of 40,000 (Dex40) and 70,000 (Dex70)), obtained by dextran adsorption onto the magnetite surface is investigated in comparison with free dextran in air and argon atmosphere. The thermal behavior of the two free dextran types and corresponding coated magnetites is similar, but atmosphere dependent. The magnetite catalyzes the thermal decomposition of dextran, the adsorbed dextran displaying lower initial decomposition temperatures comparative with the free one in both working atmospheres. The dextran adsorbed onto the magnetite surface decomposes in air through a strong sharp exothermic process up to ~450 °C while in argon atmosphere two endothermic stages are identified, one in the temperature range 160–450 °C and the other at 530–800 °C.  相似文献   

19.
The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.  相似文献   

20.
A methodology for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (MA) in seized tablets using gas chromatography with a flame ionization detector (GC-FID) is described. The chromatographic conditions, i.e. gas flow rates and temperatures for the column, injector and detector were optimized. The optimum chromatographic conditions were as follows: a CP-SIL 24 CB WCOT fused silica capillary column (30 m × 0.32 mm I.D., 0.25 μm film thickness), N2 carrier gas flowing at 2.6 mL/min, injector temperature at 290°C and detector temperature at 300°C. The oven temperature was ramped from 80°C at a rate of 20°C/min to final temperature of 270°C (1 min). All analytes were well separated within 7 min with an analysis time of 10.5 min. Calibration curves were linear over the concentration ranges of 3.125–200 μg/mL for MDMA and 6.25–200 μg/mL for MDA and MA (r > 0.990). The intra- and inter-day precisions for determining all analytes were 2.32–10.38% RSD and 1.15–9.77% RSD, respectively. The intra- and inter-day accuracies ranged from −19.79 to +17.51% DEV and −6.84 to +5.2% DEV, respectively. The lower limits of quantification (LLOQs) were 3.125 μg/mL for MDMA and 6.25 μg/mL for MDA and MA. All analytes were stable at room temperature during 24 h but significant loss occurred after 2-month storage at −20°C. The method was shown to be useful for determining the purity of MDMA in seized tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号