首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel artificial ion channels (1 and 2) based on CB[n] (n = 6 and 5, respectively) synthetic receptors with carbonyl-fringed portals (diameter 3.9 and 2.4 A, respectively) can transport proton and alkali metal ions across a lipid membrane with ion selectivity. Fluorometric experiments using large unilamellar vesicles showed that 1 mediates proton transport across the membranes, which can be blocked by a neurotransmitter, acetylcholine, reminiscent of the blocking of the K+ channels by polyamines. The alkali metal ion transport activity of 1 follows the order of Li+ > Cs+ approximately Rb+ > K+ > Na+, which is opposite to the binding affinity of CB[6] toward alkali metal ions. On the other hand, the transport activity of 2 follows the order of Li+ > Na+, which is also opposite to the binding affinity of 2 toward these metal ions, but virtually no transport was observed for K+, Rb+, and Cs+. It is presumably because the carbonyl-fringed portal size of 2 (diameter 2.4 A) is smaller than the diameters of these alkali metal ions. To determine the transport mechanism, voltage-clamp experiments on planar bilayer lipid membranes were carried out. The experiments showed that a single-channel current of 1 for Cs+ transport is approximately 5 pA, which corresponds to an ion flux of approximately 3 x 107 ions/s. These results are consistent with an ion channel mechanism. Not only the structural resemblance to the selectivity filter of K+ channels but also the remarkable ion selectivity makes this model system unique.  相似文献   

2.
In contrast to the highly-selective channels of neurophysiology employing mostly the exclusion mechanism, different factors account for the selectivity of large channels. Elucidation of these factors is essential for understanding the permeation mechanisms in ion channels and their regulation in vivo. The interaction between divalent cations and a protein channel, the bacterial porin OmpF, has been investigated paying attention to the channel selectivity and its dependence on the solution pH. Unlike the experiments performed in salts of monovalent cations, the channel is now practically insensitive to pH, being anion selective all over the pH range considered. Electrostatic calculations based on the available structural data suggest that the binding of divalent cations has two main effects: (i) the pK(a) values of key ionizable groups differ significantly from those of the isolated groups in solution and (ii) the cation binding has a decisive impact on the effective electric charge regulating the channel selectivity. A simple molecular model based on statistical thermodynamics provides additional qualitative explanations to the experimental findings that could also be useful for other related systems like synthetic nanopores, ion exchange membranes, and polyelectrolyte multilayers.  相似文献   

3.
A series of novel cyclic peptides composed of 3 to 5 dipeptide units with alternating natural-unnatural amino acid units, have been designed and synthesized, employing 5-(N-alkanoylamino)-3-aminobenzoic acid with a long alkanoyl chain as the unnatural amino acid. All cyclic peptides with systematically varying pore size, shape, and lipophilicity are found to form ion channels with a conductance of ca. 9 pS in aqueous KCl (500 mM) upon examination by the voltage clamp method. These peptide channels are cation selective with the permeability ratio P(Cl(-))/P(K(+)) of around 0.17. The ion channels formed by the neutral, cationic, and anionic cyclic peptides containing L-alanine, L-lysine, and L-aspartate, respectively, show the monovalent cation selectivity with the permeability ratio P(Na(+))/P(K(+)) of ca. 0.39. On the basis of structural information provided by voltage-dependent blockade of the single channel current of all the tested peptides by Ca(2+), we inferred that each channel is formed from a dimer of the peptide with its peptide ring constructing the channel entrance and its alkanoyl chains lining across the membrane to build up the channel pore. The experimental results are consistent with an idea that the rate of ion conduction is determined by the nature of the hydrophobic alkanoyl chain region, which is common to all the channels.  相似文献   

4.
Hydraphiles are synthetic ion channels that use crown ethers as entry portals and that span phospholipid bilayer membranes. Proton and sodium cation transport by these compounds has been demonstrated in liposomes and planar bilayers. In the present work, whole cell patch clamp experiments show that hydraphiles integrate into the membranes of human embryonic kidney (HEK 293) cells and significantly increase membrane conductance. The altered membrane permeability is reversible, and the cells under study remain vital during the experiment. Control compounds that are too short (C(8)-benzyl channel) to span the bilayer or are inactive owing to a deficiency in the central relay do not induce similar conductance increases. Control experiments confirm that the inactive channel analogues do not show nonspecific effects such as activation of native channels. These studies show that the combination of structural features that have been designed into the hydraphiles afford true, albeit simple, channel function in live cells.  相似文献   

5.
Advances in NMR and mass spectrometry as well as in peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous products from spider venoms, previously explored due to technical limitations. The chemical composition of spider venoms is diverse, ranging from low molecular weight organic compounds such as acylpolyamines to complex peptides. First, acylpolyamines (< 1000 Da) have an aromatic moiety linked to a hydrophilic lateral chain. They were characterized for the first time in spider venoms and are ligand-gated ion channel antagonists, which block mainly postsynaptic glutamate receptors in invertebrate and vertebrate nervous systems. Acylpolyamines represent the vast majority of organic components from the spider venom. Acylpolyamine analogues have proven to suppress hippocampal epileptic discharges. Moreover, acylpolyamines could suppress excitatory postsynaptic currents inducing Ca+ accumulation in neurons leading to protection against a brain ischemic insult. Second, short spider peptides (< 6000 Da) modulate ionic currents in Ca2+, Na+, or K+ voltage-gated ion channels. Such peptides may contain from three to four disulfide bridges. Some spider peptides act specifically to discriminate among Ca2+, Na+, or K+ ion channel subtypes. Their selective affinities for ion channel subfamilies are functional for mapping excitable cells. Furthermore, several of these peptides have proven to hyperpolarize peripheral neurons, which are associated with supplying sensation to the skin and skeletal muscles. Some spider N-type calcium ion channel blockers may be important for the treatment of chronic pain. A special group of spider peptides are the amphipathic and positively charged peptides. Their secondary structure is alpha-helical and they insert into the lipid cell membrane of eukaryotic or prokaryotic cells leading to the formation of pores and subsequently depolarizing the cell membrane. Acylpolyamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs.  相似文献   

6.
Changes in ectopic discharges from axons in an injured nerve were examined while agents that interact with ion channels were applied to the site of the nerve injury. Tetraethylammonium (TEA) greatly facilitated spontaneous ectopic discharges or evoked ectopic firing in previously silent axons.Tetrodotoxin, an Na~+ channel blocker,completely blocked spontaneous discharges.Verapamil, La3~+, and Mn2~+, agents that interact with Ca2~+ channels,blocked spontaneous discharges and depressed the responses evoked by TEA, noradrenaline and high concentration of K~+.Increasing Ca2~+ levels facilitated ectopic discharges and this effect was blocked by La3~+ and Mn2~+. Normal axons (from uninjured nerves) were insensitive to all the effects seen in the axons from the injured nerve.These results suggest that following nerve injury the membrane of the regenerating sprout contains new ion channels, particularly Ca2~+ channels, anti that these channels are responsible for the generation of ectopic discharges.  相似文献   

7.
The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.  相似文献   

8.
Ion channels play crucial roles in transport and regulatory functions of living cells. Understanding the gating mechanisms of these channels is important to understanding and treating diseases that have been linked to ion channels. One potential model peptide for studying the mechanism of ion channel gating is alamethicin, which adopts a split α/3(10)-helix structure and responds to changes in electric potential. In this study, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), has been applied to characterize interactions between alamethicin (a model for larger channel proteins) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers in the presence of an electric potential across the membrane. The membrane potential difference was controlled by changing the pH of the solution in contact with the bilayer and was measured using fluorescence spectroscopy. The orientation angle of alamethicin in POPC lipid bilayers was then determined at different pH values using polarized SFG amide I spectra. Assuming that all molecules adopt the same orientation (a δ distribution), at pH = 6.7 the α-helix at the N-terminus and the 3(10)-helix at the C-terminus tilt at about 72° (θ(1)) and 50° (θ(2)) versus the surface normal, respectively. When pH increases to 11.9, θ(1) and θ(2) decrease to 56.5° and 45°, respectively. The δ distribution assumption was verified using a combination of SFG and ATR-FTIR measurements, which showed a quite narrow distribution in the angle of θ(1) for both pH conditions. This indicates that all alamethicin molecules at the surface adopt a nearly identical orientation in POPC lipid bilayers. The localized pH change in proximity to the bilayer modulates the membrane potential and thus induces a decrease in both the tilt and the bend angles of the two helices in alamethicin. This is the first reported application of SFG to the study of model ion channel gating mechanisms in model cell membranes.  相似文献   

9.
The synthesis and characterization of the ion channel activity of three new bola-amphiphiles is described. These compounds are conceptually derived from a previously reported bis-cyclophane bola-amphiphile through opening of the cyclophanes to acyclic structures and were found to readily form ion channels in planar bilayer membranes as assessed by bilayer clamp single-channel analysis. All three compounds behaved very similarly: the dominant channels formed by all three are Ohmic with specific conductance of 10 +/- 1 pS (NaCl electrolyte) and 39 +/- 1 pS (CsCl electrolyte). Single-ion permeability ratios, determined from dissymmetric electrolyte experiments, showed the selectivity P(Cs(+)) > P(Na(+)) > P(Cl(-)). Less frequently, lower conductance channels were also observed to act independently of the dominant channels. The lifetimes of the dominant channels range from 70 to 280 ms for the three compounds with some very long-lived openings (20-40 s) observed for two of the three. The lower conductance states have shorter lifetimes. This study demonstrates that bis-macrocyclic compounds are not essential for channel formation by bola-amphiphiles, and opens a new class of channel-forming compounds for structure-activity optimization.  相似文献   

10.
The title reaction was studied with various techniques in 1 M sulfuric acid, a usual medium for the oscillatory Belousov-Zhabotinsky (BZ) reaction. It was found to be a more complex process than the bromomalonic acid (BrMA)-BrO3- reaction studied previously in the first part of this work. Malonic acid (MA) can react with acidic bromate by two parallel mechanisms. The main aim of the present research was to determine the mechanisms, the rate laws, and the rate constants for these parallel channels. In one reaction channel the first molecular products are glyoxalic acid (GOA) and CO2 while in the other channel mesoxalic acid (MOA) is the first molecular intermediate, that is, no CO2 is formed in this step. To prove these two independent routes specific colorimetric techniques were developed to determine GOA and MOA selectively. The rate of the GOA channel was determined by following the rate of the carbon dioxide evolution characteristic for this reaction route. In this step, regarding it as an overall process, one MA is oxidized to GOA and CO2 and one BrO3- is reduced to HOBr, which forms BrMA with another MA. The initial rate of the GOA channel is a bilinear function of the initial MA and BrO3- concentrations with a second-order rate constant k(GOA)= 2.4 x 10(-7) M(-1) s(-1). The rate of the other channel was calculated from the rate of the BrO3- consumption measured in separate experiments, assuming that the measured depletion is a sum of two separate terms reflecting the consumptions due to the two independent channels. In the MOA channel one MA is oxidized to MOA and one BrO3- is consumed while another MA is brominated as in the GOA channel. It was found that the initial rate of the MOA channel is also a bilinear function of the MA and BrO3- concentrations with a second-order rate constant k(MOA)= 2.46 x 10(-6) M(-1) s(-1). Separate chemical mechanisms are suggested for both channels. In all of the various bromate-substrate reactions of these mechanisms oxygen atom transfer from the bromate to the substrate occurs generating bromous acid intermediate. This can be of high importance in BZ systems as bromous acid is the autocatalytic intermediate there. GOA and MOA also can be oxidized by acidic bromate but a study of these reactions will be published later.  相似文献   

11.
设计合成了1-乙酰基-3-(2-羟基-4,6-二甲氧基苯基)-5-苯基-2-吡唑啉(4), 测试了其紫外光谱和荧光光谱, 研究了其对锌离子的选择性识别作用. 结果表明, 化合物4作为锌离子荧光探针, 受常见离子的干扰较小, 对于锌离子有着较高的选择性和较低的检出限.  相似文献   

12.
Ion channels are attractive targets for drug discovery with recent estimates indicating that voltage and ligand-gated channels account for the third and fourth largest gene families represented in company portfolios after the G protein coupled and nuclear hormone receptor families. A historical limitation on ion channel targeted drug discovery in the form of the extremely low throughput nature of the gold standard assay for assessing functional activity, patch clamp electrophysiology in mammalian cells, has been overcome by the implementation of multi-well plate format cell-based screening strategies for ion channels. These have taken advantage of various approaches to monitor ion flux or membrane potential using radioactive, non-radioactive, spectroscopic and fluorescence measurements and have significantly impacted both high-throughput screening and lead optimization efforts. In addition, major advances have been made in the development of automated electrophysiological platforms to increase capacity for cell-based screening using formats aimed at recapitulating the gold standard assay. This review addresses the options available for cell-based screening of ion channels with examples of their utility and presents case studies on the successful implementation of high-throughput screening campaigns for a ligand-gated ion channel using a fluorescent calcium indicator, and a voltage-gated ion channel using a fluorescent membrane potential sensitive dye.  相似文献   

13.
The 1,1-dimethylhydrazine ion ((CH3)2NNH2+*) has two low-energy dissociation channels, the loss of a hydrogen atom to form the fragment ion m/z 59, (CH3)(CH2)NNH2+, and the loss of a methyl radical to form the fragment ion m/z 45, the methylhydrazyl cation, CH3NNH2+. The dissociation of the 1,1-dimethylhydrazine ion has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy, in the photon energy range 8.25-31 eV, and tandem mass spectrometry. Theoretical breakdown curves have been obtained from a variational transition state theory (VTST) modeling of the two reaction channels and compared to those obtained from experiment. Seven transition states have been found at the B3-LYP/6-31+G(d) level of theory for the methyl radical loss channel in the internal energy range of 2.32-3.56 eV. The methyl loss channel transition states are found at R(N-C) = 4.265, 4.065, 3.965, 3.165, 2.765, 2.665, and 2.565 A over this internal energy range. Three transition states have been found for the hydrogen atom loss channel: R(H-C) = 2.298, 2.198, and 2.098 A. The DeltaS++(45) value, at an internal energy of 2.32 eV and a bond distance of R(N-C) = 4.265 A, is 65 J K-1 mol-1. As the internal energy increases to 3.56 eV the variational transition state moves to lower R value so that at R(N-C) = 2.565 A, the DeltaS++ decreases to 29 J K-1 mol-1. For the hydrogen atom loss channel the variation in DeltaS++ is less than that for the methyl loss channel. To obtain agreement with the experimental breakdown curves, DeltaS++(59) = 26-16 J K-1 mol-1 over the studied internal energy range. The 0 K enthalpies of formation (DeltafH0) for the two fragment ions m/z 45 and m/z 59 have been calculated from the 0 K activation energies (E0) obtained from the fitting procedure: DeltafH0[CH3NNH2+] = 906 +/- 6 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 822 +/- 7 kJ mol-1. The calculated G3 values are DeltafH0[CH3NNH2+] = 911 kJ mol-1 and DeltafH0[(CH3)(CH2)NNH2+] = 825 kJ mol-1. In addition to the two low-energy dissociation products, 21 other fragment ions have been observed in the dissociation of the 1,1-dimethylhydrazine ion as the photon energy was increased. Their appearance energies are reported.  相似文献   

14.
We study the insertion and behavior of modified amphiphilic cyclodextrins in suspended bilayer lipid membranes by electrophysiological methods. We observe that our molecules build single well-defined ionic channels. The pore conductance is measured in two lipid membranes differing by their composition. These measurements reveal two distinct behaviors. In the case of thin membranes, we observe single channels, whereas in the case of thick membranes, we only detect a large number of aggregated channels. In a few experiments, we have been able to monitor the transition between the two behaviors by modifying slightly the swelling of the lipid bilayers by decane. The precise structure of the channels is yet unknown; however, we deduce from our measurements an estimation of the channel diameter.  相似文献   

15.
Voltage-dependent artificial ion channels 3 and 4 were synthesized. Two cholic acid derivatives were connected through a m-xylylene dicarbamate unit at 3-hydroxyl groups. Asymmetries were introduced by terminal hydrophilic groups, carboxylic acid and phosphoric acid for 3 and hydroxyl and carboxylic acid for 4. Under basic conditions, these headgroups in 3 and 4 are expected to be dissociate into -1/-2 (pH 8.2) and 0/-1 (pH 7.2), respectively. Single ion channel properties were examined by a planar bilayer lipid membrane method under symmetrical 500 mM KCl at pH 8.2 or 7.2. When 3 and 4 were introduced into the bilayer membrane under application of positive voltage (a positive-shift method), the current values at positive applied voltage were larger than the corresponding ones at the negative applied voltage. The current-voltage plots were fitted by curves through a zero point to show clear rectification properties. The direction of rectification could be controlled by positive- or negative-shift methods. Vectorial alignment of terminal headgroup charges by the voltage-shift incorporation is essential for giving voltage-dependent rectified ion channels.  相似文献   

16.
以充蜡石墨电极作为新型支撑体,成功制备了一种季铵离子为内层(包括四丁 基铵TBA,十六烷基三甲基铵CTrMA),己二酸(HDA)为外层的新型自组装混合双 层膜,以循环伏安和电化学交流阻抗方法研究了膜的离子通道行为。该膜能够接受 Ca~(2+)的刺激作用而打开[Fe(CN)_6]~(3-/4-)电极氧化还原的离子通道,撤走该 刺激离子则通道关闭。提出了混合双层膜的结构和离子通道作用的模型,指出外层 膜HDA分子可能具有V型和W型两种结构。  相似文献   

17.
Sulfonic acid derivatives of dibenzo-18-crown-6 (DB18C6) have been shown to induce formation of ion channels permeable to monovalent cations in bilayer lipid membranes (BLM). Some electric characteristics of channels have been studied by means of the voltage clamp method. Channels displayed little interionic discrimination. The voltage dependence as well as the multiple state behaviors of the channels functioning was observed. The channels formation has been shown to be dependent on pH of bath solutions and on the presence of bivalent cations in them. The channels supposed to be formed from aggregates of complexes associates assembled in aqueous salt solutions.  相似文献   

18.
Sutcliffe MJ  Smeeton AH  Wo ZG  Oswald RE 《Faraday discussions》1998,(111):259-72; discussion 331-43
Structural models of glutamate receptors have been produced as part of a multidisciplinary study of neuronal function--both ligand/receptor interactions and ion transport--at the atomic level. The models have concentrated on the agonist binding and transmembrane domains of ionotropic (i.e. ligand-gated) glutamate receptors (iGluRs), and have aided our understanding of the molecular determinants of (1) ligand binding and (2) channel activity. The model building process involved a combination of homology modelling, distance geometry, molecular mechanics, protein-ligand and protein-protein docking, electrostatic calculations and manual adjustment, in conjunction with restraints from site-directed mutagenesis, ligand binding and electrophysiological studies. The initial models were used to produce hypotheses which were tested experimentally; these models have been subsequently refined as part of an extremely effective multidisciplinary study using an iterative molecular modelling/experimental verification cycle in which restraints derived from experimental studies are used at all stages, and the findings from one round of modelling are used as restraints in the next. By studying a variety of agonists and antagonists, details have been built up of (1) those residues involved in ligand binding and (2) the role of agonist binding (i.e. agonist-induced conformational change) in channel gating. The models also aid our understanding of the conductance properties of the channels.  相似文献   

19.
The aliphatic amino acids glycine, valine, leucine, and isoleucine are thermally placed into the gas phase and expanded into a vacuum system for access by time of flight mass spectroscopy and infrared (IR) spectroscopy in the energy range of 2500-4000 cm(-1) (CH, NH, OH, and stretching vibrations). The isolated neutral amino acids are ionized by a single photon of 10.5 eV energy (118 nm), which exceeds by less than 2 eV their reported ionization thresholds. As has been reported for many hydrogen bonded acid-base systems (e.g., water, ammonia, alcohol, acid clusters, and acid molecules), the amino acids undergo a structural rearrangement in the ion state (e.g., in simplest form, a proton transfer) that imparts sufficient excess vibrational energy to the ion to completely fragment it. No parent ions are observed. If the neutral ground state amino acids are exposed to IR radiation prior to ionization, an IR spectrum of the individual isomers for each amino acid can be determined by observation of the ion intensity of the different fragment mass channels. Both the IR spectrum and fragmentation patterns for individual isomers can be qualitatively identified and related to a particular isomer in each instance. Thus, each fragment ion detected presents an IR spectrum of its particular parent amino acid isomer. In some instances, the absorption of IR radiation by the neutral amino acid parent isomer increases a particular fragmentation mass channel intensity, while other fragmentation mass channel intensities decrease. This phenomenon can be rationalized by considering that with added energy in the molecule, the fragmentation channel populations can be modulated by the added vibrational energy in the rearranged ions. This observation also suggests that the IR absorption does not induce isomerization in the ground electronic state of these amino acids. These data are consistent with theoretical predictions for isolated amino acid secondary structures and can be related to previous IR spectra of amino acid conformers.  相似文献   

20.
Interfacial tension has been determined for phosphatidylcholine-stearic acid and phosphatidylcholine-stearylamine membranes. Phosphatidylcholine, stearic acid and stearylamine were used in the experimental. The interfacial tension values of the pure components are 1.62x10(-3) N/m, - 1.54x10(-2) N/m and 4.40x10(-3) N/m (hypothetical values), respectively. The 1:1 complexes were formed during formation of phosphatidylcholine-stearic acid and phosphatidylcholine-stearylamine membranes. The following parameters describing the complexes were determined: the surface concentrations of the lipid membranes formed from these complexes, A(3)(-1), the interfacial tensions of such membranes, gamma(3) and the stability constants of these complexes, K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号