首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the component-wise regularity of the solution to the stationary Maxwell or Stokes systems. We assume that there is a surface in R3, regarded as an interface, and the solution u to one of the systems is smooth except for this . Then, under these assumptions, we can show that some components of u are smooth across . In the Maxwell system, the normal component of u is always regular across . On the other hand, in the Stokes system, the singularity of u across can only arise to the normal derivatives of its tangential components. Furthermore, these results are shown to be optimal.  相似文献   

2.
We consider here a model of fluid-structure evolution problem which, in particular, has been largely studied from the numerical point of view. We prove the existence of a strong solution to this problem.  相似文献   

3.
The steady state system of isothermal Navier–Stokes equations is considered in two dimensional domain including an obstacle. The shape optimisation problem of minimisation of the drag with respect to the admissible shape of the obstacle is defined. The generalized solutions for the Navier–Stokes equations are introduced. The existence of an optimal shape is proved in the class of admissible domains. In general the solutions are not unique for the problem under considerations.  相似文献   

4.
In this paper, we consider a two-dimensional fluid-rigid body problem. The motion of the fluid is modelled by the Navier-Stokes equations, whereas the dynamics of the rigid body is governed by the conservation laws of linear and angular momentum. The rigid body is supposed to be an infinite cylinder of circular cross-section. Our main result is the existence and uniqueness of global strong solutions.  相似文献   

5.
A compressible one-dimensional plain Bingham flow starting in equilibrium under the action of a time-increasing spatially homogeneous mass force is investigated. A lower estimate for the width of a rigid zone is obtained. The estimate shows that the rigid zone converges to the whole interval for t tends to zero. In other words, existence of a rigid core is established. As a supplementary result, additional smoothness of solutions to the system considered is established.  相似文献   

6.
In this paper, we consider weak solutions to the equations of stationary motion of a class of non-Newtonian fluids the constitutive law of which includes the power law model as special case. We prove the existence of second order derivatives of weak solutions to these equations.  相似文献   

7.
We obtain local estimates of the steady-state Stokes system without pressure near boundary. As an application of the local estimates, we prove the partial regularity up to the boundary for the stationary Navier-Stokes equations in a smooth domain in five dimension.  相似文献   

8.
The purpose of this work is to study the existence of solutions for an unsteady fluid-structure interaction problem. We consider a three-dimensional viscous incompressible fluid governed by the Navier–Stokes equations, interacting with a flexible elastic plate located on one part of the fluid boundary. The fluid domain evolves according to the structure’s displacement, itself resulting from the fluid force. We prove the existence of at least one weak solution as long as the structure does not touch the fixed part of the fluid boundary. The same result holds also for a two-dimensional fluid interacting with a one-dimensional membrane.  相似文献   

9.
We study here the three-dimensional motion of an elastic structure immersed in an incompressible viscous fluid. The structure and the fluid are contained in a fixed bounded connected set Ω. We show the existence of a weak solution for regularized elastic deformations as long as elastic deformations are not too important (in order to avoid interpenetration and preserve orientation on the structure) and no collisions between the structure and the boundary occur. As the structure moves freely in the fluid, it seems natural (and it corresponds to many physical applications) to consider that its rigid motion (translation and rotation) may be large. The existence result presented here has been announced in [4]. Some improvements have been provided on the model: the model considered in [4] is a simplified model where the structure motion is modelled by decoupled and linear equations for the translation, the rotation and the purely elastic displacement. In what follows, we consider on the structure a model which represents the motion of a structure with large rigid displacements and small elastic perturbations. This model, introduced by [15] for a structure alone, leads to coupled and nonlinear equations for the translation, the rotation and the elastic displacement.  相似文献   

10.
In the paper we study the asymptotic dynamics of strong global solutions of the Navier Stokes equations. We are concerned with the question whether or not a strong global solution w can pass through arbitrarily large fast decays. Avoiding results on higher regularity of w used in other papers we prove as the main result that for the case of homogeneous Navier–Stokes equations the answer is negative: If [0, 1/4) and δ0 > 0, then the quotient remains bounded for all t ≥ 0 and δ∈[0, δ0]. This result is not valid for the non-homogeneous case. We present an example of a strong global solution w of the non-homogeneous Navier–Stokes equations, where the exterior force f decreases very quickly to zero for while w passes infinitely often through stages of arbitrarily large fast decays. Nevertheless, we show that for the non-homogeneous case arbitrarily large fast decays (measured in the norm cannot occur at the time t in which the norm is greater than a given positive number.   相似文献   

11.
We investigate the steady compressible Navier–Stokes system of equations in the isentropic regime in a domain with several conical outlets and with prescribed pressure drops. Existence of weak solutions is proved and estimate of these solutions with respect to the pressure drops is derived under the hypothesis γ > 3 where γ is the adiabatic constant.  相似文献   

12.
In this paper, we are concerned with free boundary problem for compressible viscous isotropic Newtonian fluid. Our problem is to find the three-dimensional domain occupied by the fluid which is bounded below by the fixed bottom and above by the free surface together with the density, the velocity vector field and the absolute temperature of the fluid satisfying the system of Navier-Stokes equations and the initial-boundary conditions. The Navier-Stokes equations consist of the conservations of mass, momentum under the gravitational field in a downward direction and energy. The effect of the surface tension on the free surface is taken into account. The purpose of this paper is to establish two existence theorems to the problem mentioned above: the first concerns with the temporary local solvability in anisotropic Sobolev-Slobodetskiĭ spaces and the second the global solvability near the equilibrium rest state. Here the equilibrium rest state (heat conductive state) means that the temperature distribution is a linear function with respect to a vertical direction and the density is determined by an ordinary differential equation which involves equation of state. For the proof, we rely on the methods due to Solonnikov in the case of incompressible fluid with some modifications, since our problem is hyperbolic-parabolic coupled system. Dedicated to Professors Takaaki Nishida and Masayasu Mimura on their sixtieth birthdays  相似文献   

13.
Let Ω be a 2-dimensional bounded domain, symmetric with respect to the x2-axis. The boundary has several connected components, intersecting the x2-axis. The boundary value is symmetric with respect to the x2-axis satisfying the general outflow condition. The existence of the symmetric solution to the steady Navier–Stokes equations was established by Amick [2] and Fujita [4]. Fujita [4] proved a key lemma concerning the solenoidal extension of the boundary value by virtual drain method. In this note, we give a different proof via elementary approach by means of the stream function.  相似文献   

14.
In this paper we establish spatial decay estimates for derivatives of vorticities solving the two-dimensional vorticity equations equivalent to the Navier–Stokes equations. As an application we derive asymptotic behaviors of derivatives of vorticities at time infinity. It is well known by now that the vorticity behaves asymptotically as the Oseen vortex provided that the initial vorticity is integrable. We show that each derivative of the vorticity also behaves asymptotically as that of the Oseen vortex.   相似文献   

15.
We study the boundary-value problem associated with the Oseen system in the exterior of m Lipschitz domains of an euclidean point space We show, among other things, that there are two positive constants and α depending on the Lipschitz character of Ω such that: (i) if the boundary datum a belongs to Lq(∂Ω), with q ∈ [2,+∞), then there exists a solution (u, p), with and uL(Ω) if aL(∂Ω), expressed by a simple layer potential plus a linear combination of regular explicit functions; as a consequence, u tends nontangentially to a almost everywhere on ∂Ω; (ii) if aW1-1/q,q(∂Ω), with then ∇u, pLq(Ω) and if aC0,μ(∂Ω), with μ ∈ [0, α), then also, natural estimates holds.  相似文献   

16.
17.
We prove the global existence of weak solutions of the Navier–Stokes equations of compressible flow in a half-space with the boundary condition proposed by Navier: the velocity on the boundary is proportional to the tangential component of the stress. This boundary condition allows for the determination of the scalar function in the Helmholtz decomposition of the acceleration density, which in turn is crucial in obtaining pointwise bounds for the density. Initial data and solutions are small in energy-norm with nonnegative densities having arbitrarily large sup-norm. These results generalize previous results for solutions in the whole space and are the first for solutions in this intermediate regularity class in a region with a boundary.  相似文献   

18.
We consider the Cauchy problem for incompressible Navier–Stokes equations with initial data in , and study in some detail the smoothing effect of the equation. We prove that for T < ∞ and for any positive integers n and m we have , as long as stays finite.  相似文献   

19.
We prove a Serrin-type regularity result for Leray–Hopf solutions to the Navier–Stokes equations, extending a recent result of Zhou [28].  相似文献   

20.
Burgers vortices are stationary solutions of the three-dimensional Navier–Stokes equations in the presence of a background straining flow. These solutions are given by explicit formulas only when the strain is axisymmetric. In this paper we consider a weakly asymmetric strain and prove in that case that non-axisymmetric vortices exist for all values of the Reynolds number. In the limit of large Reynolds numbers, we recover the asymptotic results of Moffatt, Kida & Ohkitani [11]. We also show that the asymmetric vortices are stable with respect to localized two-dimensional perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号